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Abstract

The acoustic characterization of materials plays an important role in a wide range of
industrial applications. To get a proper acoustic characterization of a material, the knowl-
edge of its intrinsic parameters is fundamental. However, this task is becoming increasingly
difficult due to the continuous development of new materials. A classical parametric ap-
proach can be used to perform the acoustic characterization of a material. Once a model
and its constitutive law are chosen, their unknown parameters are estimated by fitting the
experimental data with the mechanical response of the model. The main drawback of this
methodology is that the wrong choice of the parametric model can lead to get a response
far from the experimental data.

The main purpose of this dissertation is to present a non-parametric methodology to
characterize acoustically different materials. This data-driven methodology allows to avoid
the epistemic uncertainty of an unsuitable model selection since the mathematical modeling
of the materials is based only on the available experimental measurements. The proposed
methodology requires the numerical solution of an inverse problem at each frequency of in-
terest. To illustrate the efficiency of the methodology, numerical simulations are performed
by using real-world measurements of porous, viscoelastic, and poroelastic materials.
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Resumen

La caracterización acústica de materiales desempeña un papel importante en un gran
número de aplicaciones industriales. Para lograr una caracterización adecuada del material
es fundamental conocer sus parámetros intŕınsecos. Sin embargo, la aparición y desarrollo
de nuevos materiales hace esa tarea cada vez más dif́ıcil. Para caracterizar un material,
es posible utilizar un enfoque paramétrico clásico: una vez elegido un modelo y su ley
constitutiva, se estiman sus parámetros desconocidos ajustando los datos experimentales
a la respuesta mecánica del modelo considerado. El inconveniente más relevante de esta
metodoloǵıa es que una elección errónea del modelo paramétrico puede llevar a obtener una
respuesta muy alejada de los datos experimentales.

El principal objetivo de esta tesis es presentar una metodoloǵıa no paramétrica para
caracterizar materiales acústicamente. Es una metodoloǵıa basada en datos y evita la
incertidumbre epistémica de una selección de modelo inadecuada, ya que la modelización
matemática de los materiales se basa únicamente en las medidas experimentales disponibles.
La metodoloǵıa propuesta requiere la resolución numérica de un problema inverso para cada
frecuencia de interés. Para ilustrar la eficiencia de la metodoloǵıa, se realizan simulaciones
numéricas utilizando datos reales de materiales porosos, viscoelásticos y poroelásticos.
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Resumo

A caracterización acústica de materiais xoga un papel importante nun gran número de
aplicacións industriais. Co fin de obter una axeitada caracterización do material, é esencial
coñecer os seus parámetros intŕınsecos. Non obstante, a aparición e desenvolvemento de
novos materiais fai que esta tarefa sexa cada vez máis dif́ıcil. Para caracterizar un material,
é posible empregar un enfoque paramétrico clásico: unha vez escollido un modelo e a súa lei
constitutiva, est́ımanse os seus parámetros descoñecidos axustando os datos experimentais
á resposta mecánica do modelo elixido. A desvantaxe máis relevante desta metodolox́ıa é
que unha elección errónea do modelo paramétrico pode levar a obter unha resposta moi
afastada dos datos experimentais.

O principal obxectivo desta tese é expoñer unha metodolox́ıa non paramétrica para ca-
racterizar materiais acusticamente. É unha metodolox́ıa baseada en datos e evita a incerteza
epistémica dunha selección de modelo inadecuada, xa que a modelización matemática dos
materiais baséase únicamente nas medidas experimentais dispoñibles. A metodolox́ıa pro-
posta require a resolución numérica dun problema inverso para cada frecuencia de interese.
Para ilustrar a efectividade da metodolox́ıa, reaĺızanse simulacións numéricas empregando
datos reais de materiais porosos, viscoelásticos e poroelásticos.
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Preface

The acoustic characterization of materials plays an important role in a wide range of
industrial applications. For example, concern for acoustic comfort in means of transport
is increasing over the years: the reduction of noise emitted from jet engines in aircrafts,
or the control of vibrations in a vehicle are currently highly studied problems, and to use
the best combination of materials to improve the acoustic comfort is a great challenge in
automotive, and aerospace industries. Similarly, the use of new materials, such as natural
or recycled fibers, which have a lower environmental impact, has become more and more
popular in the industry.

Being aware of the acoustic behavior of a material and knowing its intrinsic properties
can be a great advantage, especially at the design stage of noise control systems, because it
allows us to be described precisely the acoustic behavior of the material. This means better
use of existing materials, or even the use of new ones, during the design stage, leading to a
reduction in both costs and production time.

The knowledge of the acoustic properties of a material is an increasingly difficult task.
On the one hand, the constant development of new materials, some of them formed by a
mixture of recycling materials with different properties, makes it difficult to find the intrinsic
properties of the resulting material. On the other hand, there are materials with unknown
properties, which are part of noise control devices, and which, due to their characteristics or
nature, cannot be studied when the material is considered individually, and it is necessary
to study its properties when such a material is part of a more complex system.

The main goal of this thesis is to give some novel tools that allow us to characterize
acoustically both single and multilayer materials. In the literature, there exist a variety
of parametric models to characterize, in a precise way, a layer of a significant part of the
existing materials. In order to achieve an adequate characterization, the correct choice of
the parametric model is fundamental because the more appropriate the model is, the more
precise its mechanical response will be, compared to the experimental data. Usually, with
these parametric models, it is necessary to set the frequency-dependent constitutive law, and
then the available experimental measurements are fitted with the mechanical response of
the chosen model to estimate its unknown parameters. This modeling methodology suffers
potentially from the epistemic uncertainty of an unsuitable model selection. In this thesis,
a data-driven approach is considered, avoiding the need to choose a constitutive law for
fitting. The fitting problem consists of minimizing the distance between a set of available
experimental data and the values obtained from the mechanical response of the model.

xiii
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Therefore, the mathematical modeling of the materials and the choice of their frequency-
dependent constitutive models are based only on the available experimental measurements,
and not on imposing any functional dependence of the intrinsic parameters in terms of
frequency. This data-driven methodology requires the numerical solution of an inverse
problem at each frequency of interest.

In the present dissertation thesis, there are three different parts, with a common thread:
the acoustic characterization of mono or multilayer materials that are used in the industry,
considering a novel non-parametric approach. It is important to highlight that all the nu-
merical simulations are performed by using real scenarios and in collaboration with different
research groups. The first part of this thesis is devoted to characterizing porous and fibrous
materials, and the available experimental data are absorption values at normal incident
come from the Kundt’s tube. In the second part, the material under study is a viscoelastic
solid, and the available experimental data are the echo reduction, the insertion loss, and
the fractional power dissipation, given at ultrasonic frequencies. Finally, the last part of
the thesis shows the characterization of complex systems, which involve porous materials
and viscoelastic solids, in time-dependent frameworks. The available experimental data for
porous materials are absorption values at diffuse field, measured in an alpha cabin, and for
viscoelastic materials, values of the dynamic stiffness measured using an excitation method.
A summary of each part and each chapter is featured below.
Part I: Characterization of porous materials in a Kundt’s tube. This part is focused
on the characterization of porous and fibrous materials, which are used in the automotive
industry, in the frequency domain. To predict the acoustic properties of these materials
is of great interest for a wide range of industrial applications. However, the constant
development of these materials makes it necessary to use new techniques to describe their
acoustic behavior. From a classical point of view, porous materials are modeled by using
fluid-equivalent models. But, in some cases, the chosen parametric model could not be
suitable for a particular material. For this reason, a novel non-parametric approach is
proposed. The main goal of this part is to compare the parametric approach and the non-
parametric methodology, remarking the differences between both of them. This first part
is organized as follows:

• Chapter 1: Parametric characterization of multilayer porous materials.
Porous materials may be modeled as an equivalent fluid, from a macroscopic point
of view. For this reason, a detailed review of the parametric fluid-equivalent models
is given, attending to their intrinsic physical parameters. Since the available exper-
imental data are the absorption values, measured in the Kundt’s tube, for different
configurations of single and multilayer materials, a study of several sound propaga-
tion problems in multilayer media with different configurations has been carried out,
specifying the different coupling conditions used between media, such as contact, rigid
wall, or radiation conditions, and the most relevant acoustic quantities, such as the
absorption coefficient or the surface impedance of a medium. Finally, numerical re-
sults are shown to illustrate in which situations a parametric approach could be useful,
and the weaknesses of this parametric methodology, where a non-parametric approach
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can lead us to obtain better results in the fitting and can avoid the difficulties that
appear with the parametric modelling.

• Chapter 2: A non-parametric fluid-equivalent approach for the acoustic
characterization of rigid porous materials. Instead of this, a data-driven ap-
proach is considered, avoiding the choice of a frequency-dependent constitutive law
for fitting. To avoid epistemic uncertainty when the parametric model chosen to
characterize a rigid porous material is not appropriate, this chapter considers a data-
driven approach, avoiding the choice of a frequency-dependent constitutive law for
fitting. Taking into account the available experimental data, without considering any
functional parameter dependence, an inverse problem is solved numerically at each
frequency of interest. In this chapter, the acoustic quantities used to characterize the
porous materials are defined, and the setup used to measure the experimental data
is described. This setup reproduces the methodology developed by Utsuno [171] to
characterize single layer materials, and has therefore been used to validate the results
obtained with the proposed methodology. The used inverse problem methodology is
explained in detail, and four different strategies used to choose the primal unknowns
in the inverse problem are discussed. Each one of them overcomes the limitations of
the traditional fitting procedures used for the same purpose. The numerical results
show that the proposed methodology is useful in a single porous layer configuration,
comparing the results with those obtained with the Utsuno’s method, and that it can
be extended to a double porous layer configuration, in which other methodologies can
not be applied, showing good agreement in comparison with the experimental data.

The work described in this chapter is a collaboration with Jesús Carbajo and Jaime
Ramis from the Department of Physics, Systems Engineering and Signal Theory of the
University of Alicante, and some of the results presented in this chapter are published
in [54].

Part II: Characterization of viscoelastic materials in underwater environments
The second part is devoted to studying the acoustic behavior of a viscoelastic material at
ultrasonic frequencies in underwater environments. The material under consideration is a
polymer tile which has a viscoelastic mechanical behavior at ultrasonic frequencies. The
available experimental data are the echo reduction (ER), the insertion loss (IL), and the
fractional power dissipation (FPD), measured within a water tank. This second part has
two main goals. The first one is to characterize the viscoelastic material considering a
planar surface by using a data-driven approach. In this first case, a problem of propagation
has been studied where two different acoustic sources have been taking into account: a
plane wave impinging on the material with an oblique incidence angle, and an acoustic
source with a general non-planar directivity pattern. The second goal is to characterize the
viscoelastic material considering its periodic and non-planar surface. For this purpose, an
integral equation method is used to solve the transmission problem by a periodic coupling
interface. Then, this part is organized as follows:
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• Chapter 3: Non-parametric characterization of viscoelastic materials. In
this chapter, a polymer tile has been characterized in an underwater environment.
Since the considered frequencies are ultrasonic frequencies, the polymer shows a vis-
coelastic behavior. Although the material has a non-planar surface, it is considered
as a first simplification that its surface is plane. First, the mathematical models of
the media involved in multilayer are described: dissipative compressible fluid and
viscoelastic solid. Then the coupled problem under consideration is described, and
the acoustic quantities of interest (reflection and transmission coefficients, ER, IL
and FPD). Two different direct problems of wave propagation have been considered:
when the source is a plane wave impinging on the material at oblique incidence,
and when the acoustic source is a parametric array, that is, the source has a non-
planar directivity pattern. Since the methodology used for the characterization is
a data-driven approach, an inverse problem is solved numerically at each frequency
of interest. Throughout the chapter, different constitutive laws over the primal un-
knowns of the inverse problem are shown (consider the Young modulus as a linear
function of frequency, consider that it is governed by an arbitrary smooth frequency-
dependent function, or consider some new variables that depend on the wave number
of the material and its thickness), showing the difficulties derived from each of them
and how they can be overcome. A validation of the proposed methodology has been
carried out, using manufactured data. To illustrate the robustness of the methodology
with respect to the initial guess chosen to solve the optimization problem, a variety of
initial guess in a grid around the exact value has been considered. Fitting curves have
been computed for the quantities of interest, ER, IL, and FPD, to show the variability
of frequency responses as the initial guess varies. Finally, numerical results are shown
with a real-world material to illustrate the effectiveness of the proposed method.

• Chapter 4: Numerical simulation of layered materials with non-planar
geometries. The same viscoelastic solid than in the previous chapter is considered,
but, in this case, its surface is periodic and non-planar. Since the transmission problem
between two media, with a non-planar periodic surface, considering that the source
has a non-planar directivity pattern, presents many difficulties, several simplifications
have been considered, such as to consider a plane wave impinging with an oblique
incidence angle as acoustic source, or to neglect possible shear effects, assuming that
the material can be only deformed on tension/compression mechanical stresses. In
this chapter, an integral equation method is proposed to solve this problem. The more
challenging issue is that the method does not converge for all frequencies. To achieve
a fast convergence, a shifted quasi-periodic Green function and a windowing technique
are used. Throughout the chapter, and for the sake of completeness, two different
problems have been described. The first problem is the scattering of sound waves
over a sound-soft periodic boundary. To solve this problem, single- and double-layer
representations have been used. In both cases the integral equation method has been
detailed, explaining the convergence problem that appears in the kernels. Since these
kernels involve Hankel and Bessel functions, logarithmic singularities appear that
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must be treated separately, splitting these kernel into a smooth and a logarithmic
part. In addition, quadrature rules are defined to approximate all the integrals that
appear in the method. The second problem to study is the problem of transmission
by a periodic coupling interface between two media. As in the previous case, single-
and double-layer potentials have been used in the integral formulations. In this case,
it is also necessary to deal with an hypersingular kernel which present logarithmic
singularities that are overcome by splitting the integral into two integrals (one with a
smooth kernel and the other involving the logarithmic part), which are approximate
with the quadrature rules described above. Numerical results are shown at the end
of the chapter. To validate the methodology, the results have been compared with
those obtained using the finite element method with a coarse mesh, showing that the
errors are several orders smaller. In addition, efficiencies are calculated to show the
fast convergence of the method.

The work described in this chapter is a collaboration with Professor Oscar P. Bruno
of the California Institute of Technology, carried out during a predoctoral visit of 14
weeks.

Part III: Characterization of complex systems using time-dependent problems
The last part of the thesis shows the characterization of complex systems involving dif-
ferent types of materials, such as rigid porous materials, viscoelastic solids, or poroelastic
materials, in time-dependent frameworks. The available experimental data come from two
different setups: absorption coefficients at diffuse field, measured in an alpha cabin, and
dynamic stiffness, measured by using an excitation method. Firstly, a methodology to
compute the absorption coefficient of a porous material at diffuse field in an alpha cabin
is proposed. Secondly, a new method based on a hierarchical modeling approach to com-
pute the dynamic stiffness of a viscoelastic or poroelastic solid is explained. This part is
organized as follows:

• Chapter 5: Characterization of porous materials using alpha cabins. Al-
though the absorption coefficient of a material at diffuse field can be calculated by
using the measurement in the Kundt’s tube, the most common technique to compute
it is the reverberation room method. In the automotive industry the absorption co-
efficient of a material is usually measured in an alpha cabin which is a reverberant
chamber where the frequency range and sample size is adapted to the requirements
of automotive acoustics. Since there is no standard to measure the absorption coef-
ficient in an alpha cabin, this chapter proposes a modification of the technique used
in the reverberant room. The main goal is to adapt the available methodology to the
dimensions of the alpha cabin in order to be able to measure the diffuse field. For
this reason, different assumptions are made about the behavior of the sound inside
the cabin. To measure the absorption coefficient, it is necessary to measure the re-
verberation time in the cabin with the sample and without the sample. Therefore,
a full time-dependent discretization is considered for calculating the reverberation
time in the cabin, and two different expressions are given to obtain the diffuse field



xviii Preface

absorption coefficient from this reverberation time (Sabine and Millington formulas).
Finally, numerical results are shown in two- and three-dimensional domains to illus-
trate the effectiveness of the proposed method.

• Chapter 6: An efficient hierarchical modeling approach to determine the
mechanical properties of an elastic material using dynamic stiffness data.
The dynamic stiffness of an elastic material is very important to quantify the reduc-
tion of noise propagation. For this reason, this quantity can be used to determine the
acoustic insulation of these materials. The purpose of this chapter consists in obtain-
ing the elastic coefficients of the material, by using a numerical methodology based
on a hierarchical modeling approach, and considering only the available experimental
data. The definition of the model hierarchy is made considering from the simplest
models to those where the most sophisticated details are taken into account and their
levels of accuracy are based on the assumptions made at each level. In this approach,
the differences between the mathematical models are based on the choice of a one-
or three-dimensional model and on neglecting or not the shearing modes that are
possibly contributing to the solution. Different models are proposed to describe the
behavior of viscoelastic and poroelastic materials, and a time-dependent discretiza-
tion is considered to solve the problem. Some numerical results with manufactured
data are presented to validate the code, in addition to some preliminary results with
a real material are shown.

The work described in this chapter is a collaboration with Jesús Carbajo, Pedro
Poveda and Jaime Ramis from the Department of Physics, Systems Engineering and
Signal Theory from the University of Alicante.

The last part of this document is devoted to proposing some future research lines, some of
them are starting to develop, and other ones are open problems.
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1.1 Introduction

The acoustic characterization of porous materials such as foams, materials made of
fibers, textiles or films, is of great interest for a wide range of industrial applications. These
materials are frequently used in building, automotive, and aeronautics industries [22, 56,
135, 164]. Concern for acoustic comfort is increasing over the years: the reduction of noise
in a vehicle or the control of vibrations are currently highly studied problems [19, 51]. Being
aware of the acoustic behavior of a material and knowing its intrinsic properties can lead us
to a reduction of costs and time in the design of the acoustic insulation of a vehicle. However,
this task is increasingly difficult due to the constant development of new materials in the
field of acoustic comfort. The main objective of this chapter is the acoustic characterization
of porous materials used in the automotive sector by using parametric models. The samples
under study are both materials with one layer and multilayer materials.

Usually, porous materials are modeled on a macroscopic scale as an equivalent fluid
having frequency-dependent complex acoustic properties, namely, characteristic impedance
and wave number [7]. These effective acoustic coefficients can be obtained from using spe-
cific measurement procedures ([70, 78, 79, 161, 169, 171]) or determined using a parametric
prediction model (e.g. [55, 69, 93, 100]). In general, these parametric models are based on
the asymptotic behavior at low and high frequencies of rigid porous media [55, 100] or make
use of empirical relations [69] to describe the sound propagation through the material. In
any case, it is necessary to determine one or several of its intrinsic physical properties (e.g.,
flow resistivity, porosity) before deriving its relation with respect to the effective acoustic
coefficients. Although a variety of laboratory methods and techniques [66] are available to
determine these physical parameters, a common alternative to these procedures consists
of using a derivative-free optimization procedure [131] to fit the values of these proper-
ties. In brief, an inverse methodology can be employed to minimize the difference between
the measured effective quantities of interest and those calculated using a prediction model
whose parameters need to be fitted. In most cases, and to simplify the fitting procedure, a
wide-band frequency spectrum of the surface impedance or the sound absorption coefficient
are used for this adjustment [33, 83, 173]. Both the surface impedance and the sound ab-
sorption coefficient can be obtained for a given material when it is used as a sound absorber
(i.e., a layer of porous material backed by a rigid wall) by using the standardized impedance
tube method [1].

The purpose of this chapter is to characterize single and multilayer porous materials.
In Section 1.2, the mathematical models used in this chapter are described. Most of the
rigid-frame porous materials can be modeled by using a fluid-equivalent model. Despite
their mathematical simplicity, such models involve a variety of intrinsic physical parameters,
which should be determined for each sample material. Hence, throughout Section 1.2.2,
the porous models derived in the last decades are described, giving a detailed definition
of their intrinsic parameters in terms of quantities computed in representative elementary
volumes of porous and fibrous materials. In Section 1.3, the coupling conditions used to
characterize porous materials are described (contact, rigid wall, radiation conditions,...).
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Moreover, Section 1.4 describes two different multilayer problems used for the characteriza-
tion: one for computing the absorption coefficient of a multilayer medium and another one
for calculating the transmission coefficient of a multilayer medium. In Section 1.5, a study
of the most relevant acoustic quantities, such as the absorption coefficient, the transmission
coefficient, or the surface impedance of a medium, is carried out. Section 1.6 shows the
inverse problems solved to characterize the materials under consideration acoustically. In
Section 1.7, different numerical results are shown. Some experimental data are used to
illustrate in which situations a parametric approach may be useful and in which it may
not. Finally, in Section 1.8, some conclusions about the parametric methodology are given,
explaining the advantages of this methodology and emphasizing the proposed solutions to
overcome its drawbacks.

Remark 1.1.1. Throughout this chapter, the time-harmonic dependence for the pres-
sure field (and also for the rest of the physical quantities) has been settled as π(p, t) =
Re(Π(p)eiωt), being π the time-dependent acoustic pressure field, Π the complex-valued time-
harmonic acoustic pressure field, ω the angular frequency, t the time variable, p the Carte-
sian coordinates of the spatial position, Re(·) the real part function of a complex number,
and i the imaginary unit.

1.2 Mathematical models

To compute the mechanical response of the porous materials, a variety of configurations
are considered, such as fluid-porous-rigid wall, fluid-porous-fluid, fluid-rigid plate-porous-
rigid wall,... In what follows, the mathematical models of the layers and the coupling
conditions used in these configurations are described in detail.

1.2.1 Compressible fluid

If the acoustic pressure field (understood as the Lagrangian fluctuation of the total
pressure field) is considered as primal unknown, then the time-dependent linear equation
of motion of a compressible fluid (which is assumed inviscid and isentropic) is given by

1

ρFc2
F

∂2π

∂t2
− div

(
1

ρF

∇π
)

= 0,

where π is the pressure field, and ρF and cF are the mass density and the sound velocity,
respectively, at the equilibrium state of reference. Imposing harmonic solutions, i.e., if
π(p, t) = Re(eiωtΠ(p)), being ω the angular frequency and p the spatial coordinates vector,
the harmonic pressure field Π satisfies

− ω2

ρFc2
F

Π− div

(
1

ρF

∇Π

)
= 0,
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and if ρF is assumed constant, it holds

−ω
2

c2
F

Π−∆Π = 0.

1.2.2 Classical rigid-frame porous models

The acoustic behavior of a rigid-frame porous material at the time-harmonic regime can
be represented by an equivalent fluid wave equation, written in terms of the pressure field
Π, given by

−ω2ρeq(ω)Π−Keq(ω)∆Π = 0,

where ω is the angular frequency, ρeq(ω) is the equivalent dynamic mass density, and Keq(ω)
is the equivalent dynamic bulk modulus of the porous material. This model described
above is the so-called fluid-equivalent formulation. Both equivalent coefficients are not only
depending on the angular frequency but also other intrinsic material-dependent parameters
such as the bulk mass density, the porosity, the static airflow resistivity, the tortuosity,
the static thermal permeability, and the viscous and thermal characteristic length, among
others.

Figure 1.1: Example of a representative elementary volume of a polyethylene terephthalate
fibers material.

To describe each one of these parameters, it is essential to take into account the concept
of a representative elementary volume (REV), which is the smallest volume over which
an experimental measurement (or an analytical computation taking into account the mi-
crostructure of the material) can be made to obtain a proper representative value of the
whole sample material at a macroscopic scale. In Figure 2.1, a cube of foam material has
been considered as REV. The total representative elementary volume Ω is divided into two
disjoint parts: the grey region is the solid domain ΩS of the representative elementary vol-
ume, and the transparent part of the representative volume is the domain ΩF occupied by
the interstitial fluid.
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Intrinsic parameters definition

In order to describe the sound propagation in porous media, it is necessary to determine
a set of intrinsic macroscopic acoustical parameters such as bulk mass density, porosity, flow
resistivity, tortuosity, permeability, or characteristic length. In what follows, each one of
these parameters is defined in detail.

Definition 1.2.1 (Bulk mass density). The bulk mass density ρ of a porous material is
given by

ρ =
1

vol(Ω)

∫

ΩS

ρS(p) dVp, (1.1)

where ρS is the mass density of the solid part of the representative volume Ω, and vol(·) is
the volume function of a three-dimensional domain.

Definition 1.2.2 (Porosity). The open porosity φ is defined as the ratio of the intercon-
nected pore fluid volume (the volume of the fluid phase) to the total bulk volume of the
porous aggregate. It can also be expressed in terms of the fluid and solid part of a REV as
(see [7])

φ =
vol(ΩF)

vol(Ω)
= 1− vol(ΩS)

vol(Ω)
, (1.2)

where recall that the REV domain Ω is split in the fluid and solid part, i.e., Ω = ΩF ∪ ΩS.

Since the mass density of the solid part in the REV is assumed constant microscopically,
from (1.1) it holds vol(ΩS) = ρ vol(Ω)/ρS and so the porosity (1.2) can be rewritten in terms
of the bulk mass density ρ and the solid mass density ρS:

φ = 1− ρ

ρS

.

For the particular case of a porous material having q cylindrical pores of radius R per unit
area of cross-section, the porosity is given by (see [7])

φ = qπR2. (1.3)

The absorption in a porous material is related to the resistance of the material to an
airflow passing through (the flow resistivity). Then, let us also assume that the REV has
two fronted parallel faces, Γ0 and Γ1 and that a fluid flow is imposed in the porous sample,
which produces a jump on the total pressure field at both faces of the REV. On each of
these boundaries, the total fluid pressure and the velocity W are assumed constant. Since
both faces share the same unit normal vector n (exterior to Ω on Γ1) and the fluid is
supposed incompressible at the microscopic scale, the normal velocity is identical on both
boundaries. Thereby the flow resistivity can be defined as

Definition 1.2.3 (Flow resistivity). The flow resistivity σ is defined as the quotient of the
fluid pressure jump on the fronted parallel boundaries of a REV (which are induced by a
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fluid flow) divided by the thickness sample h and the normal velocity W · n (see [7]), this
is,

σ =
Π|Γ1 − Π|Γ0

h(W · n)|Γ0

.

For a porous material, with cylindrical pores of radius R, the flow resistivity can be written
as (see [7])

σ =
8η

R2φ
, (1.4)

where η is the dynamic viscosity of the fluid in the porous sample, and φ is the porosity
given by (1.3).

Definition 1.2.4 (Tortuosity). The geometrical parameter called tortuosity α∞ is related
to the apparent increase in the mass density when the fluid saturates a porous structure and
is given by (see [7])

α∞ =

1

vol(ΩF)

∫

ΩF

||W (p)||2 dVp

(
1

vol(ΩF)

∫

ΩF

||W (p)|| dVp
)2 ,

where W is the induced microscopic velocity field in the fluid part ΩF of a REV assuming
that it is filled by an incompressible fluid.

It is commonly assumed in the scientific literature that for fibrous materials with porosity
φ close to one, α∞ = 1 (see [7]).

Definition 1.2.5 (Static viscous tortuosity). This parameter accounts for the additional
inertial influence on the viscous effects at low frequencies, and it is defined by (see [110])

α0 =

1

vol(ΩF)

∫

ΩF

||W0(p)||2 dVp

(
1

vol(ΩF)

∫

ΩF

||W0(p)|| dVp
)2 ,

where W0 is the induced microscopic static velocity field in the fluid part ΩF of a REV
assuming that it is filled by an incompressible fluid.

Definition 1.2.6 (Static viscous permeability). The static viscous permeability k0, which
is related to the flow resistivity σ by using (see [110])

k0 =
η

σ
,

where η is the dynamic viscosity of the saturating fluid.

The static viscous permeability is an intrinsic parameter which depends only on the mi-
crostructure of the porous frame.
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Definition 1.2.7 (Static thermal permeability). The thermal dissipation effects at low
frequencies are described by the static thermal permeability k′0, which is the solution of the
Poisson equation (see [110])

{
−∆k′0 = 1 in ΩF,

k′0 = 0 on Γ.

For cylindrical pores, the static thermal permeability verify (see [111])

k′0 = k0 =
η

σ
,

where η is the dynamic viscosity of the saturating fluid, and σ is the flow resistivity given
by (1.4).

Definition 1.2.8 (Static thermal tortuosity). This parameter accounts for the additional
inertial influence on the thermal effects at low frequencies, and it is defined by (see [110])

α′0 =

1

vol(ΩF)

∫

ΩF

(k′0)2 dVp

(
1

vol(ΩF)

∫

ΩF

k′0 dVp

)2 ,

where k′0 is the static thermal permeability.

Definition 1.2.9 (Viscous characteristic length). The viscous characteristic length Λ de-
scribes the viscous dissipation effects at medium and high frequencies. It is computed from
(see [100])

Λ = 2

∫

ΩF

||W (p)||2 dVp
∫

Γ

||W (p)||2 dAp

,

where W is the induced microscopic velocity field in the fluid part ΩF of a REV assuming
that is filled by an incompressible fluid and Γ is the interface boundary between the fluid
and the solid part of the REV.

Notice that this definition only depends on the geometry of the solid frame of the porous
microstructure [100]. If the pores (the fluid part of the REV) consists of isolated identical
cylindrical-like tubes, quantities σ, φ, Λ, and α∞ are related as follows (see [55]):

Λ = M

√
8α∞η

σφ
, (1.5)

where η is the dynamic viscosity of the saturating fluid, and M is a parameter that depends
on the geometry of the pores and whose value lies between 0.25 and 1 for most porous
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materials. At the microscopical level, if the cylinders are considered arranged perpendicular
to an incident acoustic field then M = 1 (see [55]), and taking into account (1.3), (1.4),
and (1.5), viscous characteristic length is given by

Λ =

√
8α∞η

σφ
=

√
8η

8η
R2(qπR2)

qπR2
= R,

where q is the number of cylindrical pores of radius R per unit area of cross-section of the
porous sample.

Definition 1.2.10 (Thermal characteristic length). The thermal characteristic length Λ′

describes the thermal dissipation effects at medium and high frequencies and is given by
(see [55])

Λ′ = 2

∫

ΩF

dVp
∫

Γ

dSp

,

where Γ is the interface boundary between the fluid and the solid part of the REV.

Analogous to the definition of the viscous characteristic length, this definition only depends
on the geometry of the microstructure of the porous sample [100]. If the pores (the fluid
part of the REV) consists of disjoint identical cylindrical-like tubes, physical quantities σ,
φ, Λ′, and α∞ are related as follows (see [55]):

Λ′ = M ′
√

8α∞η

σφ
, (1.6)

where η is the dynamic viscosity of the saturating fluid, and M ′ is a parameter that depends
on the geometry of the pores. In fact, for straight cylindrical pores perpendicular to the
surface of the porous sample, M ′ = 1 (see [55]), and taking into account (1.3), (1.4),
and (1.6), thermal characteristic length reduces to

Λ′ =

√
8α∞η

σφ
=

√
8η

8η
R2(qπR2)

qπR2
= R,

where q is the number of cylindrical pores of radius R per unit area of cross-section.
There exists a wide variety of fluid-equivalent models in the scientific literature, de-

pending on different physical parameters used to describe the mathematical models and
the assumptions required for the microstructure. Among many other models, it can be
cited: the Zwikker-Kosten model [182] based on one parameter {φ}, the Delany-Bazley
model [69] based on one parameter {σ}, the Delany-Bazley-Miki model [126] based on one
parameter {σ}, the Darcy’s like model [26, 175] based on two parameters {φ, σ}, the general
Miki model [125] based on four parameters {σ, φ, α∞, M ′′}, the Attenborough model [12]
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based on four parameters {φ, σ, α∞, M ′′}, the Wilson model [177] based on four param-
eters {ρ∞, K∞, τvor, τent}, the Johnson-Champoux-Allard model [55, 100] based on five
parameters {σ, φ, α∞, Λ, Λ′}, the Johnson-Champoux-Allard-Lafarge [55, 100, 111] model
based on six parameters {σ, φ, α∞, Λ, Λ′, k′0}, and the Johnson-Champoux-Allard-Pride-
Lafarge [55, 100, 111, 147] model based on eight parameters {σ, φ, α∞, Λ, Λ′, k′0, α0, α′0}.
All these models are described below.

Equivalent dynamic mass density and bulk modulus

In this section, the expressions of the equivalent dynamic mass density ρeq(ω), and the
equivalent dynamic bulk modulus Keq(ω) for each of the models cited in the section above
are described in detail. Some of these models (specifically those derived from the Delany-
Bazley model) provide expressions for the complex wave number k(ω), and the characteristic
impedance Z(ω). In this case, taking into account that Z(ω) =

√
Keq(ω)ρeq(ω)φ2, and

Keq(ω) = ω2ρeq(ω)/(k(ω))2, the equivalent mass density, and the equivalent bulk modulus
are computed as ρeq(ω) = k(ω)Z(ω)/(ω φ), and Keq(ω) = ω Z(ω)/(φ k(ω)), respectively.

Zwikker-Kosten model This classical model [182] only takes into account the viscosity
effects in cylindrical tubes, having a circular cross-section of radius R. The equivalent
dynamic mass density is written as follows

ρeq(ω) =
ρF

φ

(
1− 2

s
√
−i

J1(s
√
−i)

J0(s
√
−i)

)−1

,

where φ is the porosity of the material, Jn(·) are the cylindrical Bessel functions (see [4]) of
order n = 0, 1, respectively, ρF is the mass density of the fluid and s =

√
ωρFR2/η, being

η the dynamic viscosity of the saturating fluid. The equivalent dynamic bulk modulus is
given by

Keq(ω) =
π0γ

φ

(
1 + (γ − 1)

2

s
√
−iPr

J1(s
√
−iPr)

J0(s
√
−iPr)

)−1

,

where π0 is the fluid equilibrium pressure, γ is the ratio of specific heats, and Pr is the
Prandtl number defined by Pr = η Cp/κ, being κ the thermal conductivity, and Cp the
specific heat at constant pressure.

Delany-Bazley model Delany and Bazley computed an empirical model for fibrous
materials with porosity close to one which is valid for those materials whose fibers are
uniformly distributed [69]. In this model, the complex wave number k(ω) and the charac-
teristic impedance Z(ω) are computed as a function of the flow resistivity σ. The empirical
laws described by Delany and Bazley were established after measurements made by using
the Kundt’s tube for some materials of varying resistivity and performing a least-square
fitting of the experimental results. The Delany-Bazley model is suitable for fibrous materi-
als within the range 0.01 < ω/(2πσ) < 10. The empirical expressions for k(ω) and Z(ω)
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are respectively given by

k(ω) =
ω

cF

(
1 + 0.0987

(ρFω

2πσ

)−0.70

− i0.189
(ρFω

2πσ

)−0.595
)
,

Z(ω) = ρFcF

(
1 + 0.0571

(ρFω

2πσ

)−0.754

− i0.087
(ρFω

2πσ

)−0.732
)
,

where ρF, and cF are the fluid mass density, and sound speed, respectively.

Attenborough model This model is proposed to describe the behavior of rigid-porous
media in which identical circular-cylindrical pores run normal to the surface [12]. The
equivalent dynamic mass density is given by

ρeq(ω) = ρF
α∞
φ

(
1− 2

s
√
−i

J1(s
√
−i)

J0(s
√
−i)

)−1

,

where φ, and α∞ are the porosity, and the tortuosity of the material, Jn(·) are the cylindrical
Bessel functions (see [4]) of order n = 0, 1, respectively, ρF is the mass density of the fluid,
and s =

√
(8ρFα∞ω)/(φσ)/M ′′, being σ the flow resistivity of the material, and M ′′ the

pore shape factor ratio, which is an adjustable parameter for real materials with complex
pore geometry. The equivalent dynamic bulk modulus is given by

Keq(ω) =
π0γ

φ

(
1 + (γ − 1)

2

s
√
−iPr

J1(s
√
−iPr)

J0(s
√
−iPr)

)−1

,

where π0 is the fluid equilibrium pressure, γ is the ratio of specific heats, and Pr is the
Prandtl number defined by Pr = η Cp/κ, being η the dynamic viscosity coefficient, κ the
thermal conductivity, and Cp the specific heat at constant pressure.

Darcy’s like model Based on the classical Darcy’s model for incompressible flow in
porous material [26, 175], if the inertial and isothermal compressional effects are included,
the following expression for the equivalent dynamic mass density is obtained:

ρeq(ω) =
1

φ

(
ρF − i

σ

ω

)
,

where φ and σ are the porosity, and the flow resistivity of the material, respectively, and
ρF is the fluid mass density. In the same manner, the equivalent bulk modulus is given by

Keq(ω) =
ρFc

2
F

φ2γ
,

being cF the fluid sound speed, and γ the ratio of specific heats.
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Delany-Bazley-Miki model To extend the valid range of application of the original
Delany-Bazley model [69] at low frequencies, where the real part of the characteristic
impedance could reach negative values, Miki and coworkers proposed a modification of
the classical Delany-Bazley model [126]. The expression for the values of the complex wave
number k(ω) and the characteristic impedance Z(ω) are respectively given by

k(ω) =
ω

cF

(
1 + 0.109

( ω

2πσ

)−0.618

− i0.16
( ω

2πσ

)−0.618
)
,

Z(ω) = ρFcF

(
1 + 0.07

( ω

2πσ

)−0.632

− i0.107
( ω

2πσ

)−0.632
)
,

where ρF and cF are the fluid mass density and sound speed, respectively, and σ is the flow
resistivity of the material. As the classical Delany-Bazley model, this model is suitable
for fibrous materials with porosity close to one but now in the extended frequency range
ω/(2πσ) < 0.01 (see [126] for more details).

Miki model Although the Delany-Bazley-Miki model [126] provides a good prediction of
the acoustic behavior of porous materials even for low-frequency range where the classical
Delany-Bazley model [69] is not applicable, both models still suffer the restriction that the
porosity must be close to one. The new model proposed by Miki [125] generalizes these
empirical models by introducing the porosity φ, the tortuosity α∞, and the pore shape factor
ratio M ′′ given by Attenborough [11] as intrinsic parameters in the model. Expressions for
the values of the complex wave number k(ω), and the characteristic impedance Z(ω) are,
respectively, given by

k(ω) =
ω

cF

√
α∞

(
1 + 0.109

(
α∞ω

2πσφM ′′2

)−0.618

− i0.16

(
α∞ω

2πσφM ′′2

)−0.618
)
,

Z(ω) =
ρFcF

φ

√
α∞

(
1 + 0.07

(
α∞ω

2πσφM ′′2

)−0.632

− i0.107

(
α∞ω

2πσφM ′′2

)−0.632
)
,

where ρF, and cF are the fluid mass density and sound speed, respectively.

Johnson-Champoux-Allard model This model is proposed to describe the complex
density of a porous material with a motionless skeleton having arbitrary pore shapes [55,
100]. The model assumes that the thermal effects depend on the frequency. The equivalent
dynamic mass density is given by

ρeq(ω) =
ρF

φ
α∞

(
1− i σφ

ωρFα∞

√
1 + i

4α2
∞ηρFω

σ2Λ2φ2

)
,
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where φ, σ, α∞, and Λ are the porosity, the flow resistivity, the tortuosity, and the viscous
characteristic length of the material, ρF is the mass density of the fluid, and η the dynamic
viscosity. The equivalent dynamic bulk modulus is given by

Keq(ω) =
γπ0/φ

γ − (γ − 1)

(
1− i 8η

ρFΛ′2ωPr

√
1 + i

ρFΛ′2ωPr

16η

)−1 ,

where Λ′ is the thermal characteristic length of the material, π0 is the fluid equilibrium
pressure, Pr is the Prandtl number, and γ is the ratio of specific heats.

Johnson-Champoux-Allard-Lafarge model This model is a slight modification of
the Johnson-Champoux-Allard model, and hence it is a reliable model to describe the
complex density of a porous material with a motionless skeleton, having arbitrary pore
shapes [55, 100, 111]. The expression for the effective dynamic mass density is identical to
the one included in the Johnson-Champoux-Allard model, i.e.,

ρeq(ω) =
ρF

φ
α∞

(
1− i σφ

ωρFα∞

√
1 + i

4α2
∞ηρFω

σ2Λ2φ2

)
,

where φ, σ, α∞, and Λ are the porosity, the flow resistivity, the tortuosity, and the viscous
characteristic length of the material, ρF is the mass density of the fluid, and η the dynamic
viscosity. On the contrary, the expression of Keq provided by the Johnson-Champoux-
Allard model [55] is modified to include the thermal effects at low frequencies. Thus, the
expression of the effective dynamic bulk modulus is given by

Keq(ω) =
γπ0/φ

γ − (γ − 1)


1− i ηφ

ρFk′0ωPr

√
1 + i

4k′0
2ρFωPr

ηΛ′2φ2



−1 ,

where Λ′, and k′0 are the thermal characteristic length, and the static thermal permeability
of the material, π0 is the fluid equilibrium pressure, Pr is the Prandtl number, and γ is the
ratio of specific heats.

Johnson-Champoux-Allard-Pride-Lafarge model This fluid-equivalent model is pro-
posed to describe precisely the visco-inertial dissipative effects generated in the interstitial
fluid of porous media [55, 100, 111, 147]. This model introduces corrections, at low frequen-
cies, to the dynamic mass density and bulk modulus through viscous and thermal behavior,
improving the JCA model. The expression for the effective dynamic mass density is given
by

ρeq(ω) =
ρFα∞
φ


1− i ηφ

ωρFk0α∞


1− 2k0α

2
∞

(α0 − α∞)φΛ2


1−

√
1− iωρFΛ2 (α0 − α∞)2

α2
∞η






,
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being φ, σ, α∞, Λ, and k0 are the porosity, the flow resistivity, the tortuosity, the viscous
characteristic length, and the static viscous permeability of the material, ρF the mass
density, η the dynamic viscosity of the fluid, π0 the fluid equilibrium pressure, Pr the
Prandtl number, and γ the ratio of specific heats. The equivalent dynamic bulk modulus
is given by

Keq(ω) =
1

φ

γπ0

γ − (γ − 1)

(
1− iηφ

ωρFPrk′0

(
1− 2k′0

φΛ′2(α′0−1)

(
1−

√
1− iωρFPrΛ′2(α′0−1)

2

η

)))−1 ,

where Λ′, k′0, and α′0 are the thermal characteristic length, the static thermal permeability,
and the static thermal tortuosity of the material, π0 the fluid equilibrium pressure, Pr the
Prandtl number, and γ the ratio of specific heats.

Wilson model This model is adequate to describe the dissipation behavior of porous
materials with arbitrary pore shapes but without significant pore cross-section variations.
Its derivation is based on the fact that viscous and thermal dissipation effects of an acous-
tic wave propagating through a porous medium can be described as a relaxation process
(see [177] for further details). The equivalent mass density and bulk modulus coefficients
are given by

ρeq(ω) =ρ∞

√
1 + iωτvor√

1 + iωτvor − 1
, (1.7)

Keq(ω) =K∞

√
1 + iωτent√

1 + iωτent + γ − 1
, (1.8)

where

ρ∞ =
ρFα∞
φ

, K∞ =
π0γ

φ
, τvor =

2ρFα∞
φσ

, τent =
2ρFα∞Pr

φσ
, (1.9)

being φ, σ, and α∞ are the porosity, the flow resistivity, and the tortuosity of the material,
ρF the fluid mass density, π0 the fluid equilibrium pressure, Pr the Prandtl number, γ the
ratio of specific heats, τvor, and τent the vorticity-mode relaxation time and the entropy-
mode relaxation time, respectively, and ρ∞ and K∞ the mass density and the bulk modulus,
respectively, for the infinite frequency limit. To rewrite (1.7) and (1.8) with the intrinsic
parameters defined in Section 1.2.2, the auxiliary expressions in (1.9) are inserted in (1.7)
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and (1.8), obtaining

ρeq(ω) =
ρF

φ
α∞

√
1 + i

2ωρFα∞
σφ√

1 + i
2ωρFα∞
σφ

− 1

,

Keq(ω) =
γπ0

φ

√
1 + i

2ωρFα∞Pr

σφ√
1 + i

2ωρFα∞Pr

σφ
− 1

.

1.3 Coupling conditions

Once the mathematical models have been reviewed, it is necessary to describe the cou-
pling conditions between different media. Besides, coupling conditions between two media
can also be used to model the presence of thin layers of other materials.

1.3.1 Contact interface

Since the rigid-frame porous materials can be modeled by using a fluid-equivalent model,
contact interfaces between two fluids, two rigid-frame porous, or a fluid and a rigid-frame
porous are included in this section.
Where two media are in contact, the first condition to be imposed is the continuity of
normal displacements to the interface, that is,

U−(p) · n = U+(p) · n on Γ, (1.10)

whereU− andU+ are the displacement fields in the left, and in the right media, respectively,
Γ is the contact interface between both media and n is the normal vector to Γ. It is necessary
to take into account that the displacement field in a rigid-frame porous modeled by using
a fluid-equivalent model is given by φU where φ is the porosity of the porous material.
The second condition to be imposed is the continuity of pressures on the interface, that is,

Π− = Π+ on Γ, (1.11)

where Π− and Π+ are the pressure fields in the left, and in the right media, respectively.

1.3.2 Rigid wall

When a medium is in contact with a rigid wall, the contact condition is that the normal
displacement is null, that is,

U(p) · n = 0 on Γ,

where U is the displacement field in the medium, Γ is the interface where the rigid wall
condition is imposed, and n is the normal vector to Γ.
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1.3.3 Radiation conditions

In order to ensure there are no waves coming from the last medium towards the previous
one, an outgoing radiation condition is imposed on the displacement field UN when p1 tends
to infinity, this is,

lim
p1→+∞

(
∂UN(p)

∂p1

− ikNUN(p)

)
= 0,

where kN and UN are the wave number, and the displacement field in the last medium.
Moreover, to guarantee no waves are coming from the first medium towards the second one,
an incoming radiation condition is imposed on the displacement field U1 when p1 tends to
infinity, this is,

lim
p1→+∞

(
∂U1(p)

∂p1

− ik1U1(p)

)
= 0,

where k1 and U1 are the wave number, and the displacement field in the first medium.

1.3.4 Thin media models

In addition to the contact conditions between two media, it is possible to include some
media that are supposed infinitely thin, that is, their thickness is much smaller than the
thickness of the media surrounding it.

Rigid plate

It is supposed that the plate is located in Γ. Let χ(t) be the normal displacement of
the plate at time t. The movement equation of the plate (see [76]) is

m
d2χ

dt2
(t) + s

dχ

dt
(t) + rχ(t) = f(t),

wherem is the surface mass density, s is the viscosity coefficient, r is the elasticity coefficient,
and f is the superficial load. Imposing harmonic solutions, i.e., if χ(t) = Re (eiωtX), the
rigid plate equation in the frequency domain results

−mω2X + iωsX + rX = F.

If the rigid plate is located between two media in contact, where the continuity of the
displacements (see Equation (1.10)) is imposed, the coupling condition results

U−(p) · n = U+(p) · n = X on Γ.

Viscoelastic panel

Sometimes, the medium appearing between two media is a pretty thin viscoelastic
medium. In this case, the elastic response is assumed to be proportional to the jump
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in the displacements, while the viscous response is proportional to the jump in the veloc-
ities when crossing the interface Γ where the panel is located (see [21, 140]). If the panel
is located between a compressible fluid and another compressible fluid or a rigid-frame
porous, the continuity of pressures on Γ is given by (1.11). The continuity of the normal
displacement (1.10) is not required, but the pressure on Γ is supposed linearly dependent
on the jumps of the displacements, and the velocity on the interface, that is,

−Π− = −Π+ = iωZ(ω)(U+ −U−) on Γ,

where Z(ω) = β − iα
ω

is the impedance surface of the viscoelastic panel.

1.4 Plane wave analysis

In this section, considering a plane-wave framework, the pressure and the displacement
fields of a fluid (or a rigid-frame porous) are described. In the frequency domain, the
pressure field of a fluid (or a rigid-frame porous) ΠF, at oblique incidence, can be written
as

ΠF(p) = A1e
ikF(− cos θFp1+sin θFp2) + A2e

ikF(cos θFp1+sin θFp2),

where A1, and A2, are frequency-dependent complex constants which can be viewed as the
reflection and transmission coefficients between each medium, and θF is the incident angle in
the fluid. The wave number of the medium kF is given by kF = ω/cF in a compressible fluid,
and by kF =

√
ω2ρeq(ω)/Keq(ω) in a porous medium modeled following a fluid-equivalent

model. It is useful to write the displacement field in the fluid UF in terms of the pressure
field as follows

UF(p) =
i

ωZF

(−A1e
ikF(− cos θFp1+sin θFp2) + A2e

ikF(cos θFp1+sin θFp2)) cos θFe1

+(A1e
ikF(− cos θFp1+sin θFp2) + A2e

ikF(cos θFp1+sin θFp2)) sin θFe2,

being ZF the characteristic impedance of the medium, given by ZF = ρFcF in a compressible
fluid, and ZF(ω) =

√
ρeq(ω)Keq(ω)φ2 in a porous media modeled following a fluid-equivalent

model.

The available experimental data are the frequency response of the absorption coeffi-
cient and the transmission loss of different porous materials. Throughout this section, two
different problems are described: a multilayer problem formed by several layers of porous
materials with a rigid backend, to compute the absorption coefficient, and a multilayer
problem where the first and the last layer are fluids, to compute the transmission loss. For
the sake of simplicity, the dependency of ω in the physical quantities related to the porous
media such as wave number, and characteristic impedance, is omitted below.
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1.4.1 Absorption problem: multilayer medium backed by a rigid
surface

Firstly, let us consider a coupling problem used to characterize the absorbing properties
of a multilayer system. This problem consists of a planar configuration formed by one or
several porous layers surrounded by fluid in the front face and backed by a rigid wall (see
Figure 1.2). The fluid is placed in an unbounded domain (half-space), and the thicknesses
of the samples are finite (denoted by hj with j = 1, . . . , N − 1) but unbounded in the other
two Cartesian coordinates. In this simple geometrical configuration, if an incident plane
wave is impinging on the first layer at normal incidence, the complex-valued displacement
in each medium is given by a linear combination of transmitted, and reflected plane waves.
The coupled interfaces Γ1,Γ2, . . . ,ΓN are defined by
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(ZN , kN)(Z1, k1)
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ωZN
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− iA1

ωZ1
e−ik1p1 − iA3

ωZ2
e−ik2p1

iA4
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. . .
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ωZ1
eik1p1 iA2N
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j=1
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N−1∑
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hj

Figure 1.2: Geometrical configuration of the absorption problem formed by a fluid, N − 1
porous layers (highlighted in gray), and a rigid wall. Arrows from left to right denote the
propagative direction of the incident waves in each medium. Analogously, arrows from right
to left denote the propagative direction of the reflected waves in each medium. The coef-
ficients ±iAm/(ωZj) with j = 1, . . . , N , and m = 1, . . . , 2N , are the frequency-dependent
complex amplitudes that correspond to the reflection, and transmission coefficients associ-
ated with the displacement fields.

Γ1 ={p = (p1, p2, p3) ∈ R3 : p1 = 0},
Γ2 ={p = (p1, p2, p3) ∈ R3 : p1 = h1},

... (1.12)

ΓN−1 ={p = (p1, p2, p3) ∈ R3 : p1 = h1 + h2 + . . .+ hN−2}
ΓN ={p = (p1, p2, p3) ∈ R3 : p1 = h1 + h2 + . . .+ hN−1}.

All these interfaces are perpendicular to the Cartesian p1-axis, so the unit normal vector
on Γj with j = 1, . . . , N is n = e1. Following the contact coupling condition explained in



1.4. Plane wave analysis 21

Section 1.3, the interface conditions are the continuity of normal displacements and pressure
fields on Γj with j = 1, . . . , N − 1. On ΓN a rigid wall condition is imposed. Taking into
account the coupling conditions, to determine the complex constants A1, . . . , A2N , a linear
system is solved.

1.4.2 Transmission problem: multilayer medium surrounded by
a fluid

To compute the transmission properties, let us consider a coupling problem consists
of a planar configuration formed by one or several porous layers surrounded by fluid (see
Figure 1.3). The first, and the last fluids are placed in an unbounded domain (half-space)
and the thicknesses of the samples are finite (denoted by hj with j = 1, . . . , N − 1) but
unbounded in the other two Cartesian coordinates. In this configuration, if an incident plane
wave is impinging on the first layer at normal incidence, the complex-valued displacement in
each medium is given by a linear combination of transmitted and reflected plane waves. The
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Figure 1.3: Geometrical configuration of the transmission problem formed by a fluid, N −1
porous layers (highlighted in gray), and another fluid. Arrows from left to right denote
the propagative direction of the incident waves in each medium. Analogously, arrows from
right to left denote the propagative direction of the reflected waves in each medium. The
coefficients ±iAm/(ωZj) with j = 1, . . . , N+1, and m = 1, . . . , 2(N+1), are the frequency-
dependent complex amplitudes that correspond to the reflection, and transmission coeffi-
cients associated with the displacement fields.

coupled interfaces Γ1,Γ2, . . . ,ΓN are defined as in the absorption problem (1.12). Following
the contact coupling condition explained in Section 1.3, the interface conditions are the
continuity of normal displacements, and pressure fields on Γj with j = 1, . . . , N . Once
again, to determine the complex constants A1, . . . , A2N+2, a linear system is solved.
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1.5 Acoustic quantities

Once the mathematical models and the coupling conditions have been introduced and
the multilayer configurations used in this chapter have been described, it is possible to
compute some acoustic quantities of interest related to the acoustic response of a layer with
a finite thickness. In this section, some acoustic quantities are defined, such as the reflection
and the transmission coefficient, the surface impedance, the absorption coefficient, and the
transmission loss.

Definition 1.5.1. The reflection coefficient R on Γ1 is the ratio of the root mean square
value of the reflected, and the incident pressure field, that is,

|R| = (Πref)rms

(Πinc)rms

∣∣∣∣
Γ1

, (1.13)

where Πref , and Πinc are the reflected, and the incident pressure field in the first fluid
medium, respectively. The root mean square value (or RMS value) of a pressure field π is
given by

(Π)rms(p) =

√
1

T

∫ T

0

π2(p, t)dt,

where T = 2π
ω

is the period of the harmonic fields, being ω the angular frequency.

Definition 1.5.2. The absorption coefficient at normal incidence is given by

α(0) = 1− |R|2, (1.14)

where the reflection coefficient R is given by (1.13).

Definition 1.5.3. Following [109], the absorption coefficient in the presence of a diffuse
field, i.e., under a uniformly distributed incidence, is given by

αd =

∫ π/2

0

α(θ) sin(2θ) dθ,

where α(θ) is the absorption coefficient at oblique incidence given by (1.14), which depends
on the angle of incidence θ in the first medium.

Definition 1.5.4. The surface impedance Zs (see [32]) is the ratio of the pressure field at
a point p to the particle velocity at the same point. Then, the surface impedance at oblique
incidence θ on the coupling interface Γ1 is defined by the ratio

Zs(θ) =
Π1(p)

iωU1(p) · n

∣∣∣∣
p∈Γ1

=
Π1(p)

i
ωρF
∇Π1(p) · n

∣∣∣∣∣
p∈Γ1

,

where Π1 and U1 are the pressure, and the displacement fields in the first medium.
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Definition 1.5.5. The transmission coefficient is defined as the ratio of the root mean
square value of the transmitted, and the incident pressure field, and is given by

|T| = (Πtransm)rms

(Πinc)rms

,

where Πtransm is the pressure transmitted in the last fluid medium, and Πinc is the incident
pressure in the first medium.

Definition 1.5.6. The transmission loss (see [32]), understood as an acoustic quantity that
depends on the intensity field (or the acoustic power) is defined as

TL = 10 log10

(
1

τ

)
,

where

τ =
||IN+1(p)|p∈ΓN ||
||I1(p)|p∈Γ1||

,

being IN+1 and I1 the acoustic intensity field in the last, and the first fluid medium, respec-
tively.

1.6 Numerical procedure to solve the inverse prob-

lems

To characterize acoustically the materials under consideration, it is necessary to compute
the solution of inverse problems, which fits a discrete set of frequency-dependent experimen-
tal measurements of the absorption coefficient of a single layer or a multilayer configuration.
Then, for a fixed frequency value, the inverse problem is written as a minimization prob-
lem, where the cost function is the relative error between the experimental measurements
and the absorption coefficient computed with the propagation problem described in Sec-
tion 1.4.1. In this chapter, two kinds of materials have been considered: porous or fibrous
materials, modeled by using a fluid-equivalent model, and films which have been modeled
by using a rigid plate model. The fitting problems used for each one of these materials are
explained as follows.

1.6.1 Absorbing materials

Porous materials used in this chapter can be modeled by using a fluid-equivalent model
(see Section 1.2.2 for more details). In general, if it is supposed that ~p is the vector with the
intrinsic parameters of the model, all of them unknown, the fitting problem solved in each
case is, find ~p∗ that minimize the difference between the experimental and the analytical
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values, i.e.,

~p∗ = arg min
~p

M∑

m=1




N∑

j=1

|αjm − αanl(ωj, ~p, hm)|2

N∑

j=1

|αjm|2



, (1.15)

where αjm are the experimental absorption values of a material with thickness hm avail-
able for each angular frequency ωj with j = 1, . . . , N , and αanl(ωj, ~p, hm) are the analytic
absorption coefficients computed numerically by determining the acoustic propagation of
plane waves through a multilayer medium, as it has been explained in Section 1.4.1.

For example, if the porous layer follows a Miki model, the fitting problem (1.15) con-
sists in finding the values φ∗, σ∗, α∗∞, and M ′′∗ that minimize the difference between the
experimental and the analytical values, i.e.,

(φ∗, σ∗, α∗∞,M
′′∗) = arg min

0<φ<1, σ>0
α∞>0, 0.6<M′′<1

M∑

m=1




N∑

j=1

|αjm − αanl(ωj, φ, σ, α∞,M
′′, hm)|2

N∑

j=1

|αjm|2



, (1.16)

where φ, σ, α∞, and M ′′ are the porosity, the flow resistivity, the tortuosity, and the pore
shape factor ratio, respectively, which are the intrinsic parameters of the Miki model (see
Section 1.2.2 for more details).

1.6.2 Films

Due to the difficulties of repeating the measurements of the absorption coefficient for
films, to characterize them, it is necessary to consider that they are part of a multilayer
medium which is formed by other known layers. A rigid plate model has been used for the
characterization of these films. The fitting problem consists in finding the values m∗, s∗, r∗

that minimize the difference between the experimental and the analytical values, i.e.,

(m∗, s∗, r∗) = arg min
m>0, s>0

r>0




N∑

j=1

|αj − αanl(ωj,m, s, r, h)|2

N∑

j=1

|αj|2



, (1.17)

where m, s, and r are the surface mass density, the viscosity coefficient, and the elastic
coefficient, respectively. These coefficients are the parameters of the rigid plate model (see
Section 1.3.4 for more details).
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Sometimes, the surface mass density of the material is known. In this case, the fitting
problem (1.17) can be modifying to use this known value. The fitting problem consists in
finding the values s∗, r∗ that minimize the difference between the experimental and the
analytical values, i.e.,

(s∗, r∗) = arg min
s>0, r>0




N∑

j=1

|αj − αanl(ωj, s, r, h)|2

N∑

j=1

|αj|2



. (1.18)

Remark 1.6.1. Throughout this chapter, the well or ill-posedness of these problems is not
discussed. However, in Chapter 2, a detailed study about why these problems are ill-posed,
is done. The main idea is that the available experimental data are not enough to ensure the
uniqueness of the solution.

1.7 Numerical results

In this section, some porous, fibrous materials and films have been characterized by
using the parametric models described in Section 1.2. The considered materials are both
single and multilayer materials, and the numerical results are compared with the exper-
imental data measured in the Kundt’s tube (see [1]). To characterize these materials,
a Python code has been developed, following an Object-oriented paradigm. The code has
been designed as an efficient computer tool to simulate the plane wave propagation through
a multilayer medium numerically. The use of this code requires to define a coupled problem
formed by a finite set of layers, by using the models described in Section 1.2 and interface
coupling conditions between layers, by using the conditions described in Section 1.3. Once
the multilayer problem is settled, the code allows us to compute and plot several acoustic
quantities from both the multilayer problem and also from each layer independently, by us-
ing the acoustic quantities described in Section 1.5. Hence, numerical comparisons between
the computed results and the experimental values are performed. Finally, the code also
includes optimization capabilities (based on state of the art AMPL solvers), allowing to
create a multilayer problem with some unknown parameters, whose values can be identified
from experimental data.

1.7.1 Porous materials

In this section, some porous and fibrous materials have been characterized. Figure 2.5
shows some of the materials under study. Although these materials can be modeled with
most of the fluid-equivalent models explained in Section 1.2.2, all of them have been modeled
by using the Miki model. This model does not have any limitations respect to the frequency
range, as happens with the Delany-Bazley family models and it allows fitting accurate
without so many parameters as in the JCA family models.
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Figure 1.4: Top left: material made from recycled fibers. Top middle: material made from
polypropylene (PP) fibers. Top right: polyurethane foam (PU). Bottom left: PU with a
foam. Bottom middle: Foam. Bottom right: Film of thickness 180µm.

The experimental data have been measured in the Kundt’s tube by a company1. The
frequency range considered in all simulations is from 500 to 5000 Hz, measured in third-
octave. In the first simulation, a material made from recycled fibers and natural white
wool is used (sample 1). This material is available in three different thicknesses h1 = 8 mm,
h2 = 10 mm, and h3 = 12 mm. By using the fitting problem (1.16) with M = 3, the
obtained optimal values are φ = 0.94, σ = 2.08 × 105 Nm−4s, α∞ = 1.11, and M ′′ = 0.64.
With these optimal values, the relative errors are ε8 = 10.8%, ε10 = 2.57%, and ε12 = 5.6%.
In left plot of Figure 1.5, the values of the absorption coefficient computed by using the
optimal values (dashed lines) for different thicknesses are compared with the experimental
data (solid lines). In right plot of Figure 1.5, the values of the real (solid lines), and the
imaginary part (dashed lines) of the surface impedance of sample 1, computed by using the
optimal values, are shown.

In the second simulation, a material made from polyethylene terephthalate fibers is
considered (sample 2). The material is available in two different thicknesses h1 = 10 mm,
and h2 = 20 mm. By using the fitting problem (1.16) with M = 2, the obtained optimal
values are φ = 0.98, σ = 9.91 × 103 Nm−4s, α∞ = 0.38, and M ′′ = 1. With these optimal
values, the relative errors are ε10 = 24.3% and ε20 = 16.59%. In left plot of Figure 1.6, the
values of the absorption coefficient computed by using the optimal values of the parameters
(dashed lines) for different thicknesses are compared with the experimental data (solid
lines). In right plot of Figure 1.6, the values of the real (solid lines), and the imaginary

1Due to the confidentiality agreement with the company, neither the name of the company nor the
name of the materials are published. All the samples are identified by the material they are made of.
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Figure 1.5: Left: Absorption coefficient of the sample 1 with thicknesses h1 = 8 mm (in
blue), h2 = 10 mm (in red), and h3 = 12 mm (in black). The solid lines show the ex-
perimental values, and the dashed lines show the optimized values. Right: Real (solid
lines), and imaginary part (dashed lines) of the surface impedance of sample 1, plotted
with respect to the frequency. The results are computed by using the Miki model, and
the optimal values obtained with the fitting problem described in (1.16), that is, φ = 0.94,
σ = 2.08× 105 Nm−4s, α∞ = 1.11, and M ′′ = 0.64.

part (dashed lines) of the surface impedance of sample 2 are shown.

Now, a material made from polypropylene fibers with thickness h1 = 20 mm is considered
(sample 3). Again, the Miki model has been used for its characterization. By using the
fitting problem (1.16) with M = 1, the obtained optimal values are φ = 0.83, σ = 2.29 ×
104 Nm−4s, α∞ = 1.02, and M ′′ = 0.95. The relative error obtained with these optimal
values is ε = 4.05%. In left plot of Figure 1.7, the values of the computed absorption
coefficient (dashed line) are compared with the experimental data (solid line), and in right
plot of Figure 1.7, the values of the real (solid line), and the imaginary part (dashed line)
of the surface impedance of sample 3 are shown.

Now, a polyester material with thickness h1 = 15 mm has been characterized (sample 4).
In this simulation, the available experimental data come from a problem with one and with
two layers of the material, first of all, the problem under study is formed by one layer of the
sample 4 with a rigid backend. Once again, the fitting problem considered is (1.16) with
M = 1. The obtained optimal values are φ = 0.9906, α∞ = 2.079, σ = 1.1818× 104 Nm−4s,
and M ′′ = 1. The relative error obtained with these optimal values is ε = 7.49%. In left plot
of Figure 1.8, the values of the absorption coefficient computed (dashed line) are compared
with the experimental data (solid line). In right plot of Figure 1.8, the values of the real
(solid line), and the imaginary part (dashed line) of the surface impedance of sample 4 are
shown. Once the optimal values of the intrinsic parameters are obtained, the absorption
values of a multilayer formed by two layers of sample 4 in contact can be computed. The
relative error obtained is ε = 5.68%. In left plot of Figure 1.9, the values of the absorption
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Figure 1.6: Left: Absorption coefficient of the sample 2 with thicknesses h1 = 10 mm (in
blue), and h2 = 20 mm (in red). The solid lines show the experimental values, and the
dashed lines show the optimized values. Right: Real (solid lines), and imaginary part
(dashed lines) of the surface impedance of sample 2, plotted with respect to the frequency.
The results are computed by using the Miki model, and the optimal values obtained with
the fitting problem described in (1.16), that is, φ = 0.98, σ = 9.91×103 Nm−4s, α∞ = 0.38,
and M ′′ = 1.

Figure 1.7: Left: Absorption coefficient of the sample 3 with thickness h1 = 20 mm. The
solid line shows the experimental values, and the dashed line shows the computed values.
Right: Real (solid line), and imaginary part (dashed line) of the surface impedance of
sample 3 plotted with respect to the frequency. The results are computed by using the
Miki model, and the optimal values obtained with the fitting problem described in (1.16),
that is, φ = 0.83, σ = 2.29× 104 Nm−4s, α∞ = 1.02, and M ′′ = 0.95.

coefficient computed in the problem with two layers (dashed line) are compared with the
experimental data (solid line), showing a good agreement. In right plot of Figure 1.9, the
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Figure 1.8: Left: Absorption coefficient of sample 4 with thickness h1 = 15 mm. The
solid line shows the experimental values, and the dashed line shows the computed values.
Right: Real (solid line), and imaginary part (dashed line) of the surface impedance of
sample 4 plotted with respect to the frequency. The results are computed by using the
Miki model, and the optimal values obtained with the fitting problem described in (1.16),
that is, φ = 0.9906, α∞ = 2.079, σ = 1.1818× 104 Nm−4s, and M ′′ = 1.

values of the real (solid line), and the imaginary part (dashed line) of the surface impedance
of the multilayer with two layers of sample 4 in contact are shown.

1.7.2 Films

The characterization of films and other thin materials should be treated independently
due to the difficulty of repeating the measurements in the Kundt’s tube. For this reason,
films considered in this section are part of a multilayer medium which is formed by other
known layers (some of the layers characterized in Section 1.7.1). Since these films are
pretty thin, all of them are modeled following a rigid plate model (see Section 1.3.4 for
more details).

The first material under consideration is a polyethylene (PE) film (film 1) with thickness
h = 80µm as part of a multilayer medium formed by this film surrounded by the polyester
(sample 4) studied in Section 1.7.1. Then, using the parameters of the Miki model for the
sample 4 computed previously, that is, φ = 0.9906, α∞ = 2.079, σ = 1.1818 × 104 Nm−4s,
and M ′′ = 1, and the fitting problem (1.17), the optimal values for the parameters of the
film 1 are m = 0.0589 kg/m2, s = 1.58×103 kg/ms, and r = 5.496×106 kg/m2. The relative
error obtained with these optimal values is ε = 3.61%. Once, the intrinsic parameters
of sample 4 and the PE film 80µm have been computed, the absorption coefficient of
a multilayer medium formed by three layers of sample 4 and two layers of the PE film
80µm among them is calculated. The parameters of the Miki model for sample 4 are those
computed in Section 1.7.1, and the values of the rigid plate model are those computed
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Figure 1.9: Left: Absorption coefficient of a multilayer formed by two layers of sample 4
with thickness h1 = 15 mm in contact. The solid line shows the values computed considering
the optimal values of the parameters, obtained in the one-layer fitting, and the dashed line
shows the experimental data. Right: Real (solid line), and imaginary part (dashed line) of
the surface impedance of the multilayer formed by two layers of sample 4 in contact, plotted
with respect to the frequency. The results are computed by using the Miki model, and the
optimal values obtained with the fitting problem described in (1.16), that is, φ = 0.9906,
α∞ = 2.079, σ = 1.1818× 104 Nm−4s, and M ′′ = 1.

above. The relative error obtained with these optimal values is ε = 10.72%. The numerical
results of the fitting problem with two layers of sample 4, and the film 1 between them are
shown in left plot of Figure 1.10, and with three layers of sample 4, and two layers of film
among them are shown in the plot of Figure 1.10.

Now, the material under consideration is a polypropylene (PP) film (film 2) with thick-
ness h = 125µm as part of a multilayer medium formed by this film surrounded by the
polyester (sample 4) studied in Section 1.7.1. Then, using the parameters of the Miki model
for sample 4 computed previously, that is, φ = 0.9906, α∞ = 2.079, σ = 1.1818×104 Nm−4s,
and M ′′ = 1, and the fitting problem (1.17), the optimal values for the parameters are
m = 0.0609 kg/m2, s = 1.09 × 103 kg/ms, and r = 3.574 × 106 kg/m2. The relative error
with these optimal values is ε = 2.43%.

Once this configuration has been completely characterized, the absorption coefficient
of a multilayer medium formed by three layers of sample 4, and two layers of PP film
125µm among them. The parameters of the Miki model for sample 4 are those computed
in Section 1.7.1, and the values of the rigid plate model are those computed above. The
relative error obtained with these optimal values is ε = 10.38%. The numerical results of
the fitting problem with two layers of sample 4, and the film 2 between them are shown
in left plot of Figure 1.11, and with three layers of sample 4, and two layers of film among
them are shown in right plot of Figure 1.11.

The next material under consideration is a polyethylene (PE) film (film 3) with thickness



1.7. Numerical results 31

Figure 1.10: Left: Absorption coefficient of a multilayer medium formed by the film 1 with
thickness 80µm surrounded by the sample 4 with thickness h = 15 mm. Right: Absorption
coefficient of a multilayer medium formed by three layers of sample 4 with two layers
of film 1 among them, plotted with respect to the frequency. In both cases, the porous
layer (sample 4) follows a Miki model with optimal values φ = 0.9906, α∞ = 1.9, σ =
2.11×104 Nm−4, and M ′′ = 0.7402. The film has been modeled by using a rigid plate model
with optimal values m = 0.0589 kg/m2, s = 1.58× 103 kg/ms, and r = 5.496× 106 kg/m2.
The solid line shows the computed values, and the dashed line shows the experimental ones.

h = 180µm as part of a multilayer medium formed by this film surrounded by the sample 4.
Using the parameters of the Miki model for the sample 4 computed previously, and the fit-
ting problem (1.17), the obtained optimal values for the parameters are m = 0.1561 kg/m2,
s = 2.77 × 103 kg/ms and r = 3.169 × 107 kg/m2. The relative error obtained with these
optimal values is ε = 7.41%. Once this configuration has been completely characterized,
the absorption coefficient of a multilayer medium formed by three layers of the sample 4,
and two layers of the PE film 180µm among them is calculated. The parameters of the Miki
model for the sample 4 are those computed in Section 1.7.1, and the values of the rigid plate
model are those computed above. The relative error obtained with these optimal values is
ε = 11.61%. The numerical results of the fitting problem with two layers of the sample 4
and the film 3 between them are shown in left plot of Figure 1.12, and with three layers of
the sample 4, and two layers of film among them are shown in right plot of Figure 1.12.

1.7.3 Foam

As it happens with films, this material is thin enough to be modeled following a
rigid plate model (see Section 1.3.4 for more details). The material under considera-
tion is a polypropylene (PP) foam (sample 5) with thickness h = 2.2µm, and surface
density of m = 0.110 kg/m2, as part of a multilayer medium formed by this foam sur-
rounded by the sample 4. Since the surface density is known, the fitting problem used
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Figure 1.11: Left: Absorption coefficient of a multilayer medium formed by the film 2 with
thickness 125µm surrounded by the sample 4. Right: Absorption coefficient of a multilayer
medium formed by three layers of the sample 4 with two layers of the film 2 among them,
plotted with respect to the frequency. In both cases, the porous layer (sample 4) follows
a Miki model with optimal values φ = 0.9906, α∞ = 1.9, σ = 2.11 × 104 Nm−4, and
M ′′ = 0.7402. The film has been modeled by using a rigid plate model with optimal values
m = 0.0609 kg/m2, s = 1.09× 103 kg/ms, and r = 3.574× 106 kg/m2. The solid line shows
the computed values, and the dashed line shows the experimental ones.

is (1.18). The obtained optimal values for the parameters are s = 3.34 × 103 kg/ms, and
r = 4.516 × 107 kg/m2, and the relative error with these optimal values is ε = 7.09%.
Once this configuration has been completely characterized, the absorption coefficient of a
multilayer medium formed by the sample 4, the film 2, the foam, and the sample 4 has
been computed. The parameters of the Miki model for the sample 4 are those computed
in Section 1.7.1, the parameters of the film 2 are those computed in Section 1.7.2, and the
parameter of the foam are those computed above. The relative error obtained with these
optimal values is ε = 8.77%. The numerical results of the fitting problem with two layers
of the sample 4, and the foam between them are shown in left plot of Figure 1.13, and with
the sample 4, the film 2, the foam, and the sample 4 are shown in right plot of Figure 1.13.

1.8 Conclusions

Since most of the rigid-frame porous materials can be modeled by using a fluid-equivalent
model, in this chapter, the most common fluid-equivalent models used in the acoustic char-
acterization of porous and fibrous materials, have been reviewed. First of all, each model
has been described in detail, including the definition of their intrinsic physical parameters
and explaining the restrictions of each model. Moreover, a description of the coupling con-
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Figure 1.12: Left: Absorption coefficient of a multilayer medium formed by the film 3 with
thickness 180µm surrounded by the sample 4. Right: Absorption coefficient of a multilayer
medium formed by three layers of the sample 4 with two layers of the film 3 among them,
plotted with respect to the frequency. In both cases, the porous layer (sample 4) follows
a Miki model with optimal values φ = 0.9906, α∞ = 1.9, σ = 2.11 × 104 Nm−4, and
M ′′ = 0.7402. The film has been modeled by using a rigid plate model with optimal values
m = 0.1561 kg/m2, s = 2.77× 103 kg/ms, and r = 3.169× 107 kg/m2. The solid line shows
the computed values, and the dashed line shows the experimental ones.

ditions and a definition of some acoustic quantities of interest have been given. To compute
these acoustic quantities, two multilayer media have been studied: one for the computa-
tion of the absorption coefficient, and another one, for the calculation of the transmission
coefficient.

To characterize the available porous and fibrous materials, several inverse problems have
been defined. Some numerical simulations are shown in order to illustrate the advantages
and disadvantages of the parametric fitting methodology. On the one hand, these para-
metric fluid-equivalent models are well-known but have some limitations: some of them
are only for fibrous materials [12, 69], the Delany-Bazley family models [69, 126] are only
for materials with porosity close to 1, the JCA family models [55, 100, 111, 147] need a
large number of parameters what can be a challenge for the solver used to perform the
optimization. Although in some cases the numerical results for the single layers are smaller
than 10% (see left plot in Figures 1.7 and 1.8), the incessant develop of new materials,
such as recycled materials, which can not follow a concrete model or which may have an
uncertain nature, can lead us to choose a wrong model or even to need a more complex
fluid-equivalent model (see, for example, left plot in Figures 1.5 and 1.6, where errors are
much bigger). Moreover, it may be interesting to consider other acoustic quantities differ-
ent from the absorption or the transmission coefficient which are real-valued, in order to
improve the results or even to have experimental data of varying multilayer configurations
involving the material under study, to have a well-posed optimization problem [54]. In the
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Figure 1.13: Left: Absorption coefficient of a multilayer medium formed by the foam with
thickness 2.2µm (sample 5) surrounded by the sample 4. Right: Absorption coefficient of a
multilayer medium formed by the sample 4, the film 2, the foam, and the sample 4, plotted
with respect to the frequency. In both cases, the porous layer (sample 4) follows a Miki
model with optimal values φ = 0.9906, α∞ = 1.9, σ = 2.11× 104 Nm−4, and M ′′ = 0.7402.
The film has been modeled by using a rigid plate model with optimal values m = 0.0609
kg/m2, s = 1.095 × 103 kg/ms, and r = 3.574 × 107 kg/m2. The solid line shows the
computed values, and the dashed line shows the experimental ones.

next chapter, a non-parametric fluid-equivalent approach is used to overcome the issues
that appear with the parametric models, and the posedness of the optimization problems
is studied.
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2.1 Introduction

Rigid porous materials are widely used for noise mitigation in a large number of en-
gineering applications in building and environmental acoustics. In this context, it is of
great interest to predict the acoustic properties of these materials when they are part of
noise control devices (e.g., noise barriers [13], isolation walls [75]). As it is explained in
Chapter 1, these materials are modeled on a macroscopic scale as an equivalent fluid, and
its effective acoustic coefficients can be determined by using a parametric prediction model
(e.g., [55, 69, 93, 100]). The main drawback of this parametric methodology is that these
minimization procedures require using multiple frequency values for the adjustment, which
may constrain the solution of the inverse problem given by a specific parametric model.

Moreover, the chosen parametric model could not be suitable for a particular material
(e.g., the use of a single-parameter model [69] may not be accurate enough to describe
the acoustic behavior of a rigid porous material properly). Although many parametric
models exist in the literature [7, 11, 55, 69, 93, 100], the constant development of new
materials poses the need for alternative predictive tools and fitting methods. Regarding
the specific measurement procedures, some authors have proposed other methods based on
ultrasonic [78, 79], or impedance tube arrangements [34, 70, 169, 171] for measuring the
acoustic properties of porous materials. Unfortunately, most of them rely on the use of a
parametric model [78, 79], require complementary appliances or other equipment configu-
rations [34, 70, 169, 171] different from the setting described in ISO-10534 standard [1].

In this chapter, a novel non-parametric approach for the characterization of rigid porous
materials is proposed. Unlike the above approaches, the proposed procedure avoids any
parametric assumption on the coefficients of the fluid-equivalent model (see Definition 2.2.1
for further details) or the need to determine intrinsic physical parameters (required by the
parametric models) using sophisticated laboratory equipment. Instead, this non-parametric
approach uses a standardized impedance tube setup [1] data to solve a fixed-frequency prop-
agation problem and thus estimate the effective properties of the material under study using
a reduced amount of wideband experimental data. Notice that no novelties are introduced
in the use of classical fluid-equivalent models (and its associated assumption of rigid solid-
skeleton). This fluid-equivalent model is governed by a partial differential equation, which
is written in terms of different effective (frequency-dependent) coefficients, namely, e.g., the
dynamic mass density and the dynamic bulk modulus. Each of these parametric models
uses different assumptions to write these effective coefficients in terms of different expres-
sions (depending on the parametric model used), which involve intrinsic parameters of the
materials (such as porosity, flow resistivity, or tortuosity). On the contrary, the present
work analyzes how to avoid this rewriting procedure in terms of parameters and compute
the effective coefficients directly from the available measured data.

The work described in this chapter is a collaboration with Jesús Carbajo and Jaime
Ramis from the Department of Physics, System Engineering, and Signal Theory of the
University of Alicante. All the materials under study are provided by this research group,
and the available experimental data are measured in the laboratory of the research group
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to which they belong. Moreover, part of this chapter has been published in [54].
In order to validate the proposed non-parametric approach, the effective acoustic prop-

erties associated to different single and multilayer configurations of porous materials were
determined from simple surface impedance data, the results being compared to those ob-
tained with one of these methods (specifically, the two-cavity method proposed by Utsuno
et al. [171]). An excellent agreement was found between the numerically fitted results and
the experimental measurements. Besides, results were also compared to those obtained us-
ing the JCAL (Johnson-Champoux-Allard-Lafarge) parametric model, the accuracy being
potentially decreased in this latter case.

Hence, on the one hand, the proposed non-parametric methodology does not depend
on the physical nature of the rigid porous material itself, so that it is expected to be
more generic than the traditional predictive parametric approaches and may be applied to
any porous material (i.e., fibrous, granular, where different parametric models should be
used [93]). On the other hand, the proposed approach was found to be extensible to the
analysis of multilayered systems containing thin or light rigid porous layers, which may
serve to tackle the laboratory difficulties associated with the accurate characterization of
the latter alone using an impedance tube.

Given that the use of multilayered or stratified media is of great interest in real-life
engineering applications (from a thermal [181] and an acoustic [102] point of view), this
feature is highly relevant for practical purposes. Therefore, this novel numerical methodol-
ogy may be regarded as a simple and straightforward alternative for the characterization of
rigid porous materials to be used in the design stage thereof. Besides, to write the acoustic
propagation problems using a uniform approach valid for different multilayer configura-
tions, the inverse problems stated throughout this chapter have been written in terms of
the surface admittance values, in addition to using the classical absorption values or the
surface impedance values [7, 75, 171]). The mathematical analysis of the well-posed in-
verse problem associated with the characterization of the porous materials has been made
in a classical multi-modal approach, which is valid not only for the standard plane wave
propagation but also for the case of higher-order modes in a Kundt’s tube (see [148]).

This chapter is organized as follows: Section 2.2 describes the acoustic quantities used
to characterize rigid porous materials, as well as the experimental setup used to measure
these. In Section 2.3, the mathematical statement of the inherent propagation problem is
fully described. Then, the inverse problem methodology used to obtain the effective acous-
tic coefficients associated with a rigidly backed single porous layer is described in detail.
Four different strategies are outlined: each of them successively overcoming the limitations
of the traditional fitting procedures used for the same purpose. Section 2.4 presents an
extension of that methodology but for the case of a double porous layer configuration. In
Section 2.5, the numerical procedure followed to solve the well-posed inverse problems is
described. Section 2.6 presents the numerical results obtained, both for the single and
double layer configurations, showing a good agreement when compared to measured data.
Finally, Section 2.7 summarizes the main conclusions of the proposed approach.
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Remark 2.1.1. Throughout this chapter, time-harmonic dependence for the acoustic pres-
sure and displacement fields is assumed. In this manner, it has been settled formally that
π(p, t) = Re(Π(p)eiωt), being π the time-dependent acoustic pressure field, Π the complex-
valued time-harmonic acoustic pressure field, ω the angular frequency, t the time variable,
p the Cartesian coordinates of the spatial position, Re(·) the real part function of a complex
number, and i =

√
−1 the imaginary unit.

2.2 Harmonic response of a rigid porous material

To characterize the rigid porous materials, it is necessary to use some acoustic quantities.
These quantities, called effective coefficients, are described in this section emphasizing the
differences approaches to obtain them. Also, the experimental setup used to measure the
experimental data is described.

2.2.1 Macroscopic description

Linear theory regarding the propagation of sound in air-saturated rigid porous media
has been extensively studied in the last decades (see, for instance, [7]). Basically, rigid
porous materials attenuate sound mainly due to viscous friction and thermal conductivity
in their pore network. If the pore size is small compared to the wavelength of an im-
pinging sound wave, the air inside a layer of porous material with rigid solid frame (i.e.,
motionless skeleton) can be modeled accurately on a macroscopic scale as an equivalent
compressible fluid. The acoustical behavior of the material is then fully characterized by
the complex-valued and frequency-dependent effective coefficient pair: dynamic mass den-
sity ρP(ω) and dynamic bulk modulus KP(ω). Alternatively, the acoustic response of this
fluid-equivalent model can be determined from the effective coefficient pair: dynamic char-
acteristic impedance, ZP(ω), and dilatational (compressional) wave number, kP(ω), these
being related to the previous ones by (see [7]),

ZP(ω) =
√
ρP(ω)KP(ω), (2.1)

kP(ω) = ω
√
ρP(ω)/KP(ω). (2.2)

Both effective coefficients can be handle using parametric techniques and the proposed
non-parametric approach. The following definition provides a detailed definition of these
two methodologies in the framework of the mathematical modeling of rigid porous materials:

Definition 2.2.1. The frequency-dependent values of the characteristic impedance and the
wave number, respectively ρP(ω) and KP(ω), involved in a fluid-equivalent model follows:

i) a parametric approach if there exist two response functions ρ̂P and K̂P (known in
closed-form) and a finite number of constant parameters a1, . . . , am such that ρ̂P :
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(a1, . . . , am) 7→ ρ̂P(a1, . . . , am) ∈ C((0,∞),C) and K̂P : (a1, . . . , am) 7→ K̂P(a1, . . . , am)
∈ C((0,∞),C), and it holds

ρP(ω) = [ρ̂P(a1, . . . , am)](ω), KP(ω) = [K̂P(a1, . . . , am)](ω).

ii) a non-parametric approach if both values ρP(ω) and KP(ω) are only assumed given by
arbitrary complex-valued continuous functions, this is, ρP, KP ∈ C((0,∞),C).

Bearing in mind the definition above, and using the parametric Johnson-Champoux-
Allard-Lafarge model introduced in Section 1.2.2 in Chapter 1, the response function for
the complex-valued dynamic mass density and for the dynamic bulk modulus are defined
in a finite dimensional parametric space (m = 5) by

[ρ̂JCAL(φ, σ, α∞,Λ,Λ
′)](ω) =

ρF

φ
α∞

(
1− i σφ

ωρFα∞

√
1 + i

4α2
∞ηρFω

σ2Λ2φ2

)
, (2.3)

[K̂JCAL(φ, σ, α∞,Λ,Λ
′)](ω) =

γPF/φ

γ − (γ − 1)


1− i ηφ

ρFk′0ωPr

√
1 + i

4k′0
2ρFωPr

ηΛ′2φ2



−1 , (2.4)

where ρF is the mass density of the fluid, η is the dynamic viscosity, PF is the fluid equi-
librium pressure, Pr is the Prandtl number, and γ is the ratio of specific heats. Then, the
proposed non-parametric approach will be described in detail in Sections 2.3 and 2.4.

2.2.2 Experimental characterization

Experimental methods frequently used for the acoustic characterization of porous ma-
terials use an impedance tube arrangement [70, 169, 171]. Particularly, Utsuno et al. [171]
proposed the so-called two-cavity method whose experimental setup is shown in Figure 2.1
to estimate the effective acoustic properties associated with a single porous layer configu-
ration. In brief, a source (typically an audio speaker) generates plane waves that impinge
on the porous material positioned on the other end of the tube. By moving the rigid piece
behind the sample, the surface impedance is measured twice: with a rigid backing and
with a backing air cavity. The characteristic impedance (2.1) and the wave number (2.2)
of the material under test are determined then from the surface impedance data obtained
with a pair of microphones flush mounted in the tube for these two configurations. This
method was chosen in the present work because of its easiness of practical implementation
with a standard impedance tube without the need for modified arrangements [70, 169].
Consequently, this method can be used to determine either the surface impedance of a
rigid porous material following the standardized method (rigid backed) [1] or its effective
quantities of interest following the two-cavity method (rigid and air-cavity backed) [171].
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Figure 2.1: Impedance tube setup proposed by Utsuno et al. [171] to determine the char-
acteristic impedance and wave number of porous materials in a single layer configuration.

Figure 2.2 shows some pictures of the impedance tube and its respective appliances
used for these measurements in the present work. It consists of a stainless steel tube of
circular cross-section with an inner thickness of 6 mm and an inner diameter of 100 mm,
the microphones being spaced 85 mm (cut-off frequency around 1800 Hz). The acquisition
system was composed of the system OR34 Compact Analyzer (which integrates a random
noise generator), a 5M30 Beyma dynamic speaker, and two Brüel & Kjær type 4188 1/2
inch microphones. Acquisition data was post-processed to obtain the surface impedance of
the sample under study.

Figure 2.2: Impedance tube used for the experimental measurements. (Left) General view;
(Right) Detailed view of the movable rigid piece and the sample holder in which the sample
under test is placed.
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2.3 Acoustic characterization of a single porous layer

using a fixed-frequency inverse problem

Once the effective acoustic coefficients that characterize a rigid porous material and the
experimental method used to measure these were outlined in Section 2.2, a description of
the mathematical model of the associated inverse problem and subsequently the inherent
direct propagation problem is given below.

2.3.1 Statement of the direct propagation problem

When the porous medium with rigid solid frame is assumed to be homogeneous and
isotropic on a macroscopic scale, its intrinsic effective acoustic properties are considered
spatially constant, and so the classical Helmholtz and momentum equations describing the
acoustic wave propagation in such medium (written in terms of the corresponding pair of
coefficients ρP(ω) and kP(ω)) are given by

− k2
P(ω)ΠP −∆ΠP = 0, (2.5)

− ω2ρP(ω)UP −∇ΠP = 0, (2.6)

where ΠP and UP are the acoustic pressure and displacement fields in the porous medium,
respectively.

In order to model the acoustic wave propagation mathematically throughout a rigid-
backed porous layer placed inside an impedance tube, a multilayer planar configuration
formed by a porous layer surrounded by a compressible fluid in the front face (air in the case
under study), is considered. Figure 2.3 shows a two-dimensional cut of the computational
domain whose boundaries and the fluid and porous subdomains depicted are described
below. Let ΩF and ΩP be the three-dimensional domains occupied by the fluid and the
porous layer, respectively. Both, the fluid and the porous layer of thickness d are placed in
the interior of a tube with constant cross-section S. The porous layer is located at distance l
from the acoustic source. The coupled interface ΓF denotes the common boundary between
the fluid and the porous layer. The rigid lateral walls of the tube are denoted by ΓW

(assumed as being acoustically rigid, i.e., UP · η = 0, being η the unit normal vector on
the boundary), the back boundary of the porous layer is denoted by ΓB , and the acoustic
pressure source (audio speaker in practice) is placed on boundary ΓL.

To write the differential formulation of the coupled problem, both the compressible
fluid and the porous models have been expressed in terms of the pressure field. Since the
acoustic behavior of a rigid-frame porous material could be represented by a fluid-equivalent
model (2.5)-(2.6), then the differential formulation for this coupled problem is given by: for
a fixed angular frequency ω > 0, a prescribed surface admittance operator YB for the back
boundary, and an acoustic pressure source G, find the acoustic pressure and displacement
fields in the fluid, ΠF and UF, and the acoustic pressure and displacement fields in the
porous medium, ΠP and UP, such that
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Figure 2.3: Schematic two-dimensional cut of the computational domain where the fluid
(air in the case under study) and the porous subdomains, ΩF and ΩP, are marked in white
and dashed regions, respectively. Their boundaries are highlighted with different colors: ΓF

in red, ΓW in cyan, ΓL in magenta, and ΓB in blue.





−k2
F(ω)ΠF −∆ΠF = 0 in ΩF,

−ω2ρFUF −∇ΠF = 0 in ΩF,

−k2
P(ω)ΠP −∆ΠP = 0 in ΩP,

−ω2ρP(ω)UP −∇ΠP = 0 in ΩP,

UF · n = UP · n on ΓF,

ΠF = ΠP on ΓF,

iωUP ·m = YBΠP on ΓB,

UF · η = 0 on ΓW ∩ ∂ΩF,

UP · η = 0 on ΓW ∩ ∂ΩP,

ΠF = G on ΓL,

where kF(ω) = ω/cF, being cF the sound velocity and ρF the mass density in the fluid
domain (air), which are assumed to have no frequency dependence (air in ambient condi-
tions). Finally, n, m, and η are respectively the unit normal vectors on boundaries ΓF,
ΓB, and ΓW. These normal vectors are outward to the porous domain (on those bound-
aries where it is applicable). Notice that the system of equations written above involves
the standard continuity assumption of the pressure and the normal displacements on ΓF

(see [7, Chapter 11]).

Equivalently, the coupled problem stated above can be reformulated only in terms of
the acoustic pressure field ΠF in the fluid domain and the acoustic pressure field ΠP in the
porous layer:
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−k2
F(ω)ΠF −∆ΠF = 0 in ΩF,

−k2
P(ω)ΠP −∆ΠP = 0 in ΩP,

1

ρF

∂ΠF

∂n
=

1

ρP(ω)

∂ΠP

∂n
on ΓF,

ΠF = ΠP on ΓF,
1

iωρP(ω)

∂ΠP

∂m
= YBΠP on ΓB,

∂ΠF

∂η
= 0 on ΓW ∩ ∂ΩF,

∂ΠP

∂η
= 0 on ΓW ∩ ∂ΩP,

ΠF = G on ΓL.

(2.7)

The multimodal decomposition described further is similar to the work written in [90].
There, a method for solving the acoustic time- harmonic wave equation in a non-uniform
waveguide is proposed. The multimodal method is based on the use of a spectral basis in
each transverse section of the guide, using Fourier-like series (see [94]).

Following standard arguments to model waveguides [120], the transversal section S of
the impedance tube is assumed constant along its axis (in the p1-direction), the acoustic
pressure source is placed on the plane p1 = −l, and the coupling interface and the back
surface are placed on planes p1 = 0 and p1 = d, respectively. Hence, ΩF = (−l, 0)× S and
ΩP = (0, d) × S and then the L2(S)-Hilbert basis {ϕn}n∈N of transverse modes associated
to the impedance tube [62] can be computed as the eigenmodes of the two-dimensional
problem on the p2 − p3 coordinate plane





−λ2
nϕn −

d2ϕn
dp2

2

− d2ϕn
dp2

3

= 0 in S,

∂ϕn
∂r

= 0 on ∂S,

where λn is the transverse eigenvalue associated to the n-th mode ϕn, and r denotes the unit
normal vector on boundary ∂S exterior to S (r is determined by the last two components
of normal vector η). Since the coupling boundary ΓF and the back surface ΓB are assumed
planar and placed on p1 = 0 and p1 = d, respectively, then the unit outward normal
vectors are given by n = −e1 and m = e1, being {e1, e2, e3} the canonical vector basis
of the Cartesian system. Hence, the solution of the pressure fields (written in Cartesian
coordinates p = (p1, p2, p3)) are given by

ΠF(p) =
∞∑

n=0

(
AnFe

−iβnF(ω)p1 +Bn
Fe

iβnF(ω)p1
)
ϕn(p2, p3) for p ∈ ΩF, (2.8)

ΠP(p) =
∞∑

n=0

(
AnPe

−iβnP(ω)p1 +Bn
Pe

iβnP(ω)p1
)
ϕn(p2, p3) for p ∈ ΩP, (2.9)
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where AnF, Bn
F, AnP, Bn

P are the modal coefficients associated to n-th mode for the acoustic
pressure in the fluid and porous subdomains, respectively; βnF(ω) =

√
k2

F(ω)− λ2
n and

βnP(ω) =
√
k2

P(ω)− λ2
n for n ∈ N (notice that the square root is computed with the positive

criterion Re(
√
z) ≥ 0).

In addition, the pressure induced by the active boundary of the acoustic pressure source,
ΓL, can be represented by G =

∑∞
n=0 gnϕn, where gn is the projection of function G into the

basis element ϕn. Consequently, the action of the surface admittance operator YB, which
can be read as a Dirichlet-to-Neumann (DtN) operator on ΓB associated to problem (2.7)
(see for instance [85, 96]), can be expressed by

F =
∞∑

n=0

fnϕn 7→ YBF =
∞∑

n=0

Y n
B (ω)fnϕn.

Consequently, problem (2.7) can be decoupled in terms of the transverse modes, and hence
the modal coefficients {AnF, Bn

F, A
n
P, B

n
P}n∈N are the solution of the following sequence of

linear algebraic system of equations:





ρP(ω)βnF(ω)(−AnF +Bn
F) = ρFβ

n
P(ω)(−AnP +Bn

P),

AnF +Bn
F = AnP +Bn

P,

βnP(ω)

ωρP(ω)

(
−AnPe−iβ

n
P(ω)d +Bn

Pe
iβnP(ω)d

)
= Y n

B (ω)
(
AnPe

−iβnP(ω)d +Bn
Pe

iβnP(ω)d
)
,

AnFe
iβnF(ω)l +Bn

Fe
−iβnF(ω)l = gn,

for each n ∈ N.
Once the solution of the modal coefficients {AnF(ω), Bn

F(ω), AnP(ω), Bn
P(ω)}n∈N have been

computed, from (2.8)-(2.9), the surface impedance operator on boundary ΓF can be defined
as the trace of the pressure field associated to a prescribed normal velocity on ΓF. This
functional operator ZI is completely described by its action on the trace of each basis
element ϕn as follows:

F =
∞∑

n=0

fnϕn 7→ ZIF =
∞∑

n=0

Zn
I (ω)fnϕn with Zn

I (ω) = ZF
AnF(ω) +Bn

F(ω)

AnF(ω)−Bn
F(ω)

, (2.10)

where fn is the projection of F into the basis element ϕn, ZF is the characteristic impedance
of the fluid medium, and Zn

I (ω) is the surface impedance of the porous layer for each mode
n ∈ N.

Analogously, the sound absorption coefficient of the porous layer can be computed as
a scalar quantity associated to each transverse mode. So, for each mode n ∈ N, the n-th
modal sound absorption coefficient is given by

αn(ω) = 1−
∣∣∣∣
Zn

I (ω)− ZF

Zn
I (ω) + ZF

∣∣∣∣
2

= 1−
∣∣∣∣
YF − Y n

I (ω)

YF + Y n
I (ω)

∣∣∣∣
2

, (2.11)
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where the modal admittance values are given by Y n
I (ω) = 1/Zn

I (ω) and the characteristic
admittance by YF = 1/ZF. Notice that, in the case of n = 0, α0(ω) coincides with the
absorption coefficient computed in the classical plane wave analysis at normal incidence.

The main concern for practitioners consists of ensuring an adequate choice of the para-
metric porous model. The most accurate selection is not always possible to be known a
priori, since it depends on the acoustic nature of the material samples. In fact, an inad-
equate model selection could ruin any parameter model fitting. As a partial remedy of
these drawbacks, in the present chapter, the proposed non-parametric methodology avoids
the choice and the use of parametric models. More precisely, it is not required to impose
any functional dependency on the acoustic quantities used in (2.1)-(2.2) in terms of the
frequency, and it is only based on the experimental measurements. Throughout the follow-
ing sections, different strategies are described in detail, showing their drawbacks and the
potential applicability for the characterization of the porous material properties.

2.3.2 Characterization with absorption datasets

In this characterization strategy, for a fixed frequency value ω, it is assumed that the
propagation problem (2.7) is solved with only a back admittance operator, whose coefficients
{Y n

B (ω)}n∈N and the absorbing coefficients {αn(ω)}n∈N are known. So, the characterization
problem can be stated as follows.

Problem 2.3.1 (Inverse problem with a single absorption dataset). For a fixed frequency
value ω and a fixed transverse mode n0, find the complex-valued coefficients kP(ω) and
ZP(ω) assuming only known the absorption value αn0(ω) obtained by solving problem (2.7)
with the back admittance value Y n0

B (ω) on ΓB.

Lemma 2.3.2. Problem 2.3.1 is ill-posed in the sense that there exists an innumerable
number of solutions due to the lack of observation data.

Proof. Firstly, despite αn0(ω) only depends on the absolute value of a quotient of complex-
valued expressions involving the surface admittance values, let us consider for simplicity the
most favorable case where the surface admittance YI is also known in phase and modulus
in addition to the absorption quantity. In this case, the pressure field ΠP, which is solution
of the propagation problem (2.7), satisfies the boundary conditions

1

iωρP(ω)

∂ΠP

∂n
= YIΠP on ΓF,

1

iωρP(ω)

∂ΠP

∂m
= YBΠP on ΓB.

Hence, the porous coefficients An0
P and Bn0

P hold




− β
n0
P (ω)

ωρP(ω)
(−An0

P +Bn0
P ) = Y n0

I (ω) (An0
P +Bn0

P ) ,

βn0
P (ω)

ωρP(ω)

(
−An0

P e
−iβn0P (ω)d +Bn0

P eiβ
n
P(ω)d

)

= Y n0
B (ω)

(
An0

P e
−iβn0P (ω)d +Bn0

P eiβ
n0
P (ω)d

)
,
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where Y n0
I (ω) = 1/Zn0

I (ω). From both equations, if the quotient Bn0
P /An0

P is solved for both
equations, it holds

Y n0
B (ω) + A(ω)

Y n0
B (ω)− A(ω)B(ω)

=
A(ω) + Y n0

I (ω)

A(ω)− Y n0
I (ω)

with A(ω) = βn0
P (ω)/(ωρP(ω)) and B(ω) = e2iβ

n0
P (ω)d. Obviously, the equation written

above has uncountable solutions since, for each fixed arbitrary value of B(ω), there are
different solution values for A(ω). The same conclusion is derived for the pair of coefficients
(βn0

P (ω), ρP(ω)) and consequently also for (kP(ω), ZP(ω)) taking into account the definition
of wave number βn0

P , this is, kP(ω) =
√

(βn0
P (ω))2 + λ2

n0
and ZP(ω) = ρP(ω)ω/kP(ω).

The ill-posedness of the inverse problem stated above could be tentatively medicated
adding new absorption observations with a second different back admittance leading to the
following strategy:

Problem 2.3.3 (Inverse problem with two absorption datasets). For a fixed frequency
value ω and a fixed transverse mode n0, find the complex-valued coefficients kP(ω) and
ZP(ω) assuming known the absorption values αn0(ω) and α̃n0(ω) obtained respectively by
solving problem (2.7) with two different back admittance values Y n0

B (ω) and Ỹ n0
B (ω) on ΓB.

However, even with an additional absorption dataset, the inverse problem to be solved
is still ill-posed.

Lemma 2.3.4. Problem 2.3.3 is ill-posed in the sense that there exists an uncountable
number of solutions due to the lack of phase information on the observation data.

Proof. Firstly, let us consider for simplicity the most favorable case where the surface ad-
mittance YI and ỸI are known in phase and modulus in addition to the absorption quantities
αn0(ω) and α̃n0(ω), respectively. In this case, the pressure fields ΠP and Π̃P, which are re-
spectively solutions of propagation problem (2.7) with admittance operators YB and ỸB,
satisfy the boundary conditions

1

iωρP(ω)

∂ΠP

∂n
= YIΠP on ΓF,

1

iωρP(ω)

∂ΠP

∂m
= YBΠP on ΓB,

1

iωρP(ω)

∂Π̃P

∂n
= ỸIΠ̃P on ΓF,

1

iωρP(ω)

∂Π̃P

∂m
= ỸBΠ̃P on ΓB.

Hence, the modal coefficients An0
P and Bn0

P associated to ΠP hold




− β
n0
P (ω)

ωρP(ω)
(−An0

P +Bn0
P ) = Y n0

I (ω) (An0
P +Bn0

P ) ,

βn0
P (ω)

ωρP(ω)

(
−An0

P e
−iβn0P (ω)d +Bn0

P eiβ
n0
P (ω)d

)

= Y n0
B (ω)

(
An0

P e
−iβn0P (ω)d +Bn0

P eiβ
n0
P (ω)d

)
,
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and analogously those modal coefficients Ãn0
P and B̃n0

P associated to Π̃P hold





− β
n0
P (ω)

ωρP(ω)

(
−Ãn0

P + B̃n0
P

)
= Ỹ n0

I (ω)
(
Ãn0

P + B̃n0
P

)
,

βn0
P (ω)

ωρP(ω)

(
−Ãn0

P e
−iβn0P (ω)d + B̃n0

P eiβ
n0
P (ω)d

)

= Ỹ n0
B (ω)

(
Ãn0

P e
−iβn0P (ω)d + B̃n0

P eiβ
n0
P (ω)d

)
,

where Y n0
I (ω) = 1/Zn0

I (ω) and Ỹ n0
I (ω) = 1/Z̃n0

I (ω). Following straightforward computa-
tions (analogous to those ones described, for instance, in [171] where impedance-dependent
expressions are used instead), it leads to

A(ω) =

√√√√√
Y n0

I (ω)Ỹ n0
I (ω)

(
Ỹ n0

B (ω)− Y n0
B (ω)

)
+ Y n0

B (ω)Ỹ n0
B (ω)

(
Ỹ n0

I (ω)− Y n0
I (ω)

)

(
Ỹ n0

B (ω)− Y n0
B (ω)

)
+
(
Ỹ n0

I (ω)− Y n0
I (ω)

) ,

(2.12)

βn0
P (ω) =

1

2id
ln

(
Y n0

I (ω)− A(ω)

Y n0
I (ω) + A(ω)

Y n0
B (ω)− A(ω)

Y n0
B (ω) + A(ω)

)
, ρP(ω) =

βn0
P (ω)

ωA(ω)
, (2.13)

and consequently there exists a solution for ZP(ω) and kP(ω) (given by ZP(ω) = ρP(ω)ω/kP(ω)
and kP(ω) =

√
(βn0

P (ω))2 + λ2
n0

). Now, coming back to the original absorption datasets of
Problem 2.3.3, it is easy to show that the inverse problem is ill-posed using the solution de-
scribed above: since αn0(ω) (2.11) only depends on the absolute value of a complex-valued
expressions, if the value of Y n0

I (ω) in (2.11) is replaced by

YF
YF(eiγ − 1)− Y n0

I (ω)(eiγ + 1)

Y n0
I (ω)(eiγ − 1)− YF(eiγ + 1)

,

for any arbitrary value γ ∈ (−π, π], then the absorption values will be identical for any
arbitrary value of γ. The same argument can be applied to the absorption coefficient
α̃n0(ω) replacing the values of Ỹ n0

I (ω) in (2.11). In conclusion, the inverse problem based
on absorption datasets has an infinite uncountable number of solutions varying simply
γ.

2.3.3 Characterization with surface impedance datasets

Since the inverse problem described in the previous section is still ill-posed, a new
characterization strategy is used, considering surface impedance values instead of absorption
values. Since the surface impedance data are complex-valued while the absorption data
are real-valued, the strategy possesses more input information and the ill-posedness of
the inverse problem could be overcome. So, in this characterization strategy, for a fixed
frequency value ω, it is assumed that only a propagation problem (2.7) is solved with only
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a back admittance operator, whose coefficients are {Y n
B (ω)}n∈N and the surface admittance

values {Y n
I (ω)}n∈N are known. So, the characterization problem can be stated as follows.

Problem 2.3.5 (Inverse problem with a single surface admittance dataset). For a fixed
frequency value ω and a fixed transverse mode n0, find the complex-valued coefficients kP(ω)
and ZP(ω) assuming only known the surface admittance value Y n0

I (ω) on ΓF obtained by
solving problem (2.7) with the back admittance value Y n0

B (ω) on ΓB.

Lemma 2.3.6. Problem 2.3.5 is ill-posed in the sense that there exist innumerable solutions
due to the lack of observation data.

Proof. The same arguments described in the proof of Lemma 2.3.2 lead to the conclusion
that there exists an uncountable number of solutions.

The ill-posedness of the inverse problem stated above can be overcome adding an addi-
tional surface admittance observation with a second different back admittance leading to
the following characterization approach:

Problem 2.3.7 (Inverse problem with two surface impedance datasets). For a fixed fre-
quency value ω and a fixed transverse mode n0, find the complex-valued coefficients kP(ω)
and ZP(ω) assuming known the surface admittance values Y n0

I (ω) and Ỹ n0
I (ω) on ΓF ob-

tained respectively by solving problem (2.7) with two different back admittance values Y n0
B (ω)

and Ỹ n0
B (ω) on ΓB.

However, even with two frequency response curves associated with surface admittance
values, the inverse problem to be solved will have an infinite (but countable) number of
solutions.

Lemma 2.3.8. Problem 2.3.7 is well-posed in the sense that there exists an infinite (but
countable) number of solutions due to the periodicity of the wave number values.

Proof. Following identical arguments to those ones used in the proof of Lemma 2.3.4, the
existence of solution of the inverse problem is ensured from the expressions of A(ω), βn0

P (ω)
and ρP(ω) in (2.12)-(2.13). The uniqueness of solution for the expression A(ω) is straight-
forward taking into account that it is the root of a quadratic polynomial, where only the
solution with positive real part is considered. However, from (2.13), it is clear that due
to the periodicity (with respect to the imaginary axis) of the complex-valued exponential
function, the wave number admits the solutions

βn0
P (ω) =

1

2id
ln

(
Y n0

I (ω)− A(ω)

Y n0
I (ω) + A(ω)

Y n0
B (ω)− A(ω)

Y n0
B (ω) + A(ω)

)
+
π`(ω)

d
for `(ω) ∈ Z, (2.14)

which leads to an infinite (but countable) number of solutions for βn0
P (ω). The same con-

clusions hold for ρP(ω) and ZP(ω).
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Remark 2.3.9. To overcome the lack of uniqueness in the previous inverse problem, the
value of the integer parameter `(ω) should be fixed. In that case, the inverse Problem 2.3.7
would be well-posed and it would have a unique solution. For this purpose, two assumptions
are considered: (i) the frequency response function associated to βn0

P (ω) is continuous (so,
no discontinuities are allowed in its frequency response) and (ii) the integer value `(ω) is
assumed known at a given frequency.

Taking into account the strategy devised in Remark 2.3.9, to overcome the lack of
uniqueness of solution in (2.13) the value of ` should be fixed. In practice, there are
different possible alternatives for this purpose. For instance, it would be enough to know
the low-frequency limit of the dynamic mass density, i.e., limω→0 ρP(ω) = ρP0 (see, for
instance, the relevance of this low-frequency limits for rigid and limp frame porous materials
in [144, 162]). Alternatively, since βn0

P (ω) =
√

(ω/cP(ω))2 − λ2
n0

, being cP(ω) the sound
speed in the porous material, if it is assumed that cP(ω) is not null in the limit case
when ω → 0, then it can be fixed ` at the low-frequency regime to ensure the static
limit βn0

P (0) = λn0 . Subsequently, `(ω) is updated at higher frequencies to guarantee no
discontinuities are presented on the frequency response of βn0

P (ω). This latter procedure
has been used throughout all the numerical results shown in this chapter (in particular,
once it is fixed n0 = 0, it holds βn0

P (ω)→ 0 and also `(ω)→ 0 when ω tends to 0).

2.4 Acoustic characterization of a double porous layer

using a fixed-frequency inverse problem

In most of the acoustic engineering applications, absorbing materials are stratified, and
hence they are composed by a number of different porous layers. The characterization
strategy described in the previous section can be adapted to deal with this multilayer
configuration. For the sake of conciseness, a double multilayer configuration composed of
two different porous materials is presented in this section. However, similar arguments could
be applied to stratified porous media with a higher number of layers (see Remark 2.4.4).

2.4.1 Statement of the direct propagation problem

The mathematical model of the time-harmonic wave propagation problem is analogous
to (2.7) described in Section 2.3.1 for a single layer case. More precisely, for a double layer
configuration, let ΩF be three-dimensional domain occupied by the fluid and ΩP and ΩQ be
respectively the three-dimensional domains occupied by two porous layers (see Figure 2.4
for a better understanding of the notation). The coupling boundary between both porous
layers is denoted by ΓQ, located on the plane p1 = h. Notation on the rest of exterior and
coupling boundaries and also on the unit normal vectors is identical to that one used in
Section 2.3.

Hence, the differential formulation of the coupled problem with a double porous layer
is given by the following problem: for a fixed angular frequency ω > 0, a prescribed
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ΓW

ΓL

ΩF

ΓF m

n
ΓB

ΩP ΩQ

ΓQ

h d− h

η

n

l

e2

e1

Figure 2.4: Schematic two-dimensional cut of the impedance tube where the fluid (air in
the case under study) and the two porous subdomains, ΩF, ΩP, and ΩQ, are marked with
different patterns. The boundaries are highlighted with different colors: ΓF in red, ΓW in
cyan, ΓL in magenta, ΓQ in green, and ΓB in blue.

back surface admittance operator YB, and an acoustic pressure source G, find the acoustic
pressure field in the fluid ΠF and in the porous media ΠP and ΠQ such that





−k2
F(ω)ΠF −∆ΠF = 0 in ΩF,

−k2
P(ω)ΠP −∆ΠP = 0 in ΩP,

−k2
Q(ω)ΠQ −∆ΠQ = 0 in ΩQ,

1

ρF

∂ΠF

∂n
=

1

ρP(ω)

∂ΠP

∂n
on ΓF,

ΠF = ΠP on ΓF,

1

ρP(ω)

∂ΠP

∂n
=

1

ρQ(ω)

∂ΠQ

∂n
on ΓQ,

ΠP = ΠQ on ΓQ,

1

iωρQ(ω)

∂ΠQ

∂m
= YBΠQ on ΓB,

∂ΠF

∂η
= 0 on ΓW ∩ ∂ΩF,

∂ΠP

∂η
= 0 on ΓW ∩ ∂ΩP,

∂ΠQ

∂η
= 0 on ΓW ∩ ∂ΩQ,

ΠF = G on ΓL,

(2.15)

where kF(ω) = ω/cF being ρF and cF the mass density and the sound velocity in the
fluid, ρP(ω), ρQ(ω) and kP(ω), kQ(ω) are the frequency-dependent equivalent dynamic
mass density and the frequency-dependent wave number of the porous materials located
respectively in the layers ΩP and ΩQ. Unit vectors n, m, and η are respectively normal on
boundaries ΓF ∪ ΓQ, ΓB, and ΓW, and outward to the porous layer ΩP (on the boundaries
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where it is applicable).
The direct propagation problem (2.15) can be decoupled in terms of the transverse modes

(as it has been described in detail for a single layer in Section 2.3). Consequently, the modal
coefficients {AnF, Bn

F, A
n
P, B

n
P, A

n
Q, B

n
Q}n∈N associated respectively with the acoustic pressure

fields ΠF, ΠP, and ΠQ are the solution of the following sequence of linear algebraic system
of equations: for each n ∈ N, it holds





ρP(ω)βnF(ω)(−AnF +Bn
F) = ρFβ

n
P(ω)(−AnP +Bn

P),

AnF +Bn
F = AnP +Bn

P,

ρQ(ω)βnP(ω)(−AnPe−iβ
n
P(ω)h +Bn

Pe
iβnP(ω)h)

= ρP(ω)βnQ(ω)(−AnQe−iβ
n
Q(ω)h +Bn

Qe
iβnQ(ω)h),

AnPe
−iβnP(ω)h +Bn

Pe
iβnP(ω)h = AnQe

−iβnQ(ω)h +Bn
Qe

iβnQ(ω)h,

βnQ(ω)

ωρQ(ω)

(
−AnQe−iβ

n
Q(ω)d +Bn

Qe
iβnQ(ω)d

)
= Y n

B (ω)
(
AnQe

−iβnQ(ω)d +Bn
Qe

iβnQ(ω)d
)
,

AnFe
iβnF(ω)l +Bn

Fe
−iβnF(ω)l = gn,

where βnQ(ω) =
√
k2

Q(ω)− λ2
n for n ∈ N, and the notation is analogous to that one used in

problem (2.8)-(2.9). Once these modal coefficients are computed solving the above linear
system for a fixed n ∈ N, the contribution of the n-th mode to the surface impedance (2.10)
on ΓF or the absorption coefficient (2.11) of the double porous layer configuration can be
computed straightforwardly.

2.4.2 Characterization with four surface admittance datasets

In sections presented above, Problems 2.3.1, 2.3.3, 2.3.5, and 2.3.7 deal with the char-
acterization of a single porous layer. However, the numerical methodology proposed in this
chapter can be applied to frameworks much more complex where two porous materials can
be characterized simultaneously. Obviously, the datasets to be used in the inverse problem
should be doubled. Notice also that the present strategy combined with a Transfer Matrix
Method (TMM) [7, Chapter 11] applied to each modal contribution could be used in a
general multilayer configuration but at the expense of increasing the number of datasets
used in the inverse characterization problem. Consequently, for a multilayer sample formed
by two layers of different porous materials, “P” and “Q”, the characterization problem can
be stated as follows.

Problem 2.4.1 (Inverse problem with four surface impedance datasets). For a fixed fre-
quency value ω and a fixed transverse mode n0, find the complex-valued coefficients of the
characteristic impedance and the wave number, ZP(ω), and kP(ω) (resp. ZQ(ω), and kQ(ω)),
associated to the porous layer “P” (resp. “Q”) assuming known:
(i)-(ii) The surface admittance values Y n0

I (ω) (respectively Ỹ n0
I (ω)) on ΓF, obtained by

solving a single layer configuration problem (2.7) with the porous material “P” (resp. “Q”)
and the back admittance values Y n0

B (ω) (resp. Ỹ n0
B (ω)) on ΓB.
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(iii)-(iv) The surface admittance values Ŷ n0
I (ω) (respectively Y̆ n0

I (ω)) on ΓF, obtained by
solving a double layer configuration problem (2.15), being materials “ P” and “Q” (resp.
“ Q” and “P”) placed on the right and left layers, and the back admittance value Ŷ n0

B (ω)

(resp. Y̆ n0
B (ω)) on ΓB.

Remark 2.4.2. Other choices of surface admittance datasets could be considered in the
definition of Problem 2.4.1 (for instance, datasets involving only double layer configura-
tions and two different back admittance conditions). In fact, since single and double layer
configurations are used in Problem 2.4.1, possibly the same back admittance operator could
be considered in all the datasets i)-iv).

As it is expected from the results shown related to Problem 2.3.7, even with the use
of four surface impedance datasets, the inverse problem characterizing the double layer
configuration has an infinite (but countable) number of solutions.

Lemma 2.4.3. Problem 2.4.1 is well-posed in the sense that there exists an infinite (but
countable) number of solutions due to the periodicity of the wave number values.

Proof. Firstly, consider the datasets i) and iii) and assume that the complex-valued prop-
erties (ZQ(ω), kQ(ω)) are known. For instance, from dataset iii) can be understood as the
surface admittance data coming from a single layer configuration where the back admit-
tance data can be computed as the input admittance of the porous layer (ZP(ω), kP(ω))
backed with the admittance Ỹ n0

B (ω). More precisely, the back surface admittance on ΓQ

associated to the front boundary of a layer of porous material (ZQ(ω), kQ(ω)) of thickness
d− h and supported on its back-end boundary with admittance Ỹ n0

B (ω) is given by

˜̃Y n0
B (ω) =

1

YQ(ω)

YQ(ω) + Ỹ n0
B (ω) tanh(βn0

Q (ω)(d− h))

Ỹ n0
B (ω) + YQ(ω) tanh(βn0

Q (ω)(d− h)
, (2.16)

where YQ(ω) = 1/ZQ(ω). Hence, applying the arguments of the proof in Lemma 2.3.8, the
values (ZP(ω), kP(ω))) are uniquely determined except for the phase changes in the wave
number coefficient (see (2.14)). Analogous arguments are also applicable to dataset i).

Once the phase of the wave number is fixed using a given criterion (see Remark 2.3.9),
the existence and uniqueness of solution of single layer Problem 2.3.7 with datasets i)
and iii) ensures that the mapping X : (ZQ, kQ) 7→ (ZP, kP) is well-defined and injective. In
addition, since expressions involved in (2.12)-(2.13) and (2.16) are continuous, this mapping
is also continuous in C2. Analogous arguments can be used to conclude that if (ZP, kP) are
assumed known then the complex-valued coefficients (ZQ, kQ) can be uniquely determined
from datasets ii) and iv) (except for the phase changes in the wave number coefficient).
Hence, the mapping Y : (ZP, kP) 7→ (ZQ, kQ) is well-defined, injective and continuous.
In addition, since the single layer problems which are involved in mappings X and Y

involves datasets iii) and iv) respectively, for an arbitrary complex disc D ⊂ C2, it holds
X(Y(D)) = D (otherwise, it would imply that one of the datasets is not compatible with
the rest of them).
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Consequently, the inverse Problem 2.4.1 can be formulated as a fixed point problem: find
(ZP(ω), kP(ω)) such that (ZP(ω), kP(ω)) = (X ◦ Y)(ZP(ω), kP(ω)). Hence, the existence
of solution is guaranteed from the classical Brouwer fixed-point theorem [168] applied on
a disc of sufficiently large radius D in C2. The uniqueness of this fixed point is clear from
the injective character of X and Y. Once (ZP(ω), kP(ω)) is determined, the values of
(ZQ(ω), kQ(ω)) are computed straightforwardly using (ZQ(ω), kQ(ω)) = Y(ZP(ω), kP(ω)).
In conclusion, except for a phase change in the wave numbers (which leads to a countable
infinite number of solutions on kP(ω) and kQ(ω)), the inverse Problem 2.4.1 is well-posed.

Despite the proof of the existence and uniqueness of Problem 2.4.1 relies on the use of
a fixed-point theorem, the numerical resolution of both inverse Problems 2.3.7 and 2.4.1,
(with single and double layer configurations) involves the same numerical method whose
main characteristics are: the rewritten of the modal linear system in terms of robust primal
unknowns and the use of a TMM method combined with a derivative-free optimization
method to find the solution of each inverse problem. This numerical procedure is described
in detail in the following section.

Remark 2.4.4. Although this chapter is mainly focused on a single and double layer con-
figuration, an analogous non-parametric procedure could be designed to characterize nu-
merically an arbitrary stratified medium composed by N layers. In this case, the numerical
results obtained for this general configuration confirm that 2N complex-valued datasets (sur-
face impedances or admittances) would be required to state a well-posed inverse problem as
in the case of the double layer configuration.

2.5 Numerical procedure to solve the inverse prob-

lems

The proposed approach for determining the characteristic impedance and the wave
number associated to a fluid-equivalent rigid porous model uses intensively the numerical
solution of a sequence of inverse problems, which fits a discrete set of frequency-dependent
experimental measurements of the surface admittance of a single or double layer config-
uration. With this aim, for a fixed frequency value and a given modal contribution, the
inverse problem is rewritten as a minimization problem where the cost function is the rel-
ative error between the experimental measurements and the surface admittance computed
with the direct propagation problem. Both the proposed non-parametric approach and the
parametric JCAL model have been compared within the same framework and using the
same amount of experimental data.

2.5.1 Non-parametric approach

Since the fluid-equivalent equations can be written in terms of any pair of the dynamic
coefficients introduced in Section 2.3.1, there exists a variety of model coefficients which
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could be used as primal unknowns in the cost function used in the minimization problem to
be solved numerically. For instance, the surface admittance could be computed naively in
terms of the real and the imaginary part of the mass density ρP(ω) and the bulk modulus
KP(ω) as primal unknowns (see Section 2.6.1 for check the numerical results). In this case,
despite relative fitting error are almost negligible, spurious oscillations distort the parameter
frequency-response due to the exponential dependence of the TMM matrix coefficients with
respect to these acoustic quantities (see [53] for details).

In order to mitigate this situation, instead of using the dynamic mass density and the
dynamic bulk modulus as primal unknowns, the minimization problem has been rewritten
replacing the real and imaginary part of the bulk modulus by a novel pair of primal un-
knowns: δP(ω) = Re(βn0

P (ω))d and MP(ω) = eIm(β
n0
P (ω))d, which involves the wave number

βn0
P (ω) of the porous material associated to the n0-th transverse mode and the thickness

of the porous layer d. Hence, since the acoustic quantity measurements chosen for fitting
is the surface admittance in Problem 2.3.7, the values of MP(ω), δP(ω), Re(ρP(ω)), and
Im(ρP(ω)) are computed as the solution of the minimization problem

(MP(ω), δP(ω),Re(ρP(ω)), Im(ρP(ω)))

= arg min
MP,δP>0
Re(ρP)>0
Im(ρP)<0

( |YI(ω)− Y TMM
I (ω, n0, Y

n0
B (ω),MP, δP,Re(ρP), Im(ρP))|2
|YI(ω)|2

+
|ỸI(ω)− Y TMM

I (ω, n0, Ỹ
n0

B (ω),MP, δP,Re(ρP), Im(ρP))|2
|ỸI(ω)|2

)
, (2.17)

where Y TMM
I (ω, n0, Y

n0
B ,MP, δP,Re(ρP), Im(ρP)) is the surface admittance computed by

solving the linear problem (2.7) (single layer configuration) with back admittance Y n0
B using

the TMM method for the n0-th modal contribution. Similarly, the minimization problem
with a double multilayer configuration can be written as follows:

(MP(ω),MQ(ω), δP(ω), δQ(ω),Re(ρP(ω)),Re(ρQ(ω)), Im(ρP(ω)), Im(ρQ(ω)))

= arg min
MP,MQ,δP,δQ>0
Re(ρP),Re(ρQ)>0
Im(ρP),Im(ρQ)<0

( |YI(ω)− Y TMM
I (ω, n0, Y

n0
B (ω),MP, δP,Re(ρP), Im(ρP))|2
|YI(ω)|2

+
|ỸI(ω)− Y TMM

I (ω, n0, Ỹ
n0

B (ω),MQ, δQ,Re(ρQ), Im(ρQ))|2
|ỸI(ω)|2

+
|ŶI(ω)− Y TMM

I (ω, n0, Ŷ
n0

B (ω),MP,MQ, δP, δQ,Re(ρP),Re(ρQ), Im(ρP), Im(ρQ))|2
|ŶI(ω)|2

+
|Y̆I(ω)− Y TMM

I (ω, n0, Y̆
n0

B (ω),MP,MQ, δP, δQ,Re(ρP),Re(ρQ), Im(ρP), Im(ρQ))|2
|Y̆I(ω)|2

)
,

(2.18)
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where δQ(ω) = Re(βn0
Q (ω))(d − h) and MQ(ω) = eIm(β

n0
Q (ω))(d−h) are the pair of primal un-

knowns related to the second porous layer involving its wave number βn0
Q and its thickness

d − h and Y TMM
I denotes the surface admittance computed by solving the linear prob-

lem (2.15) (double multilayer configuration) with back admittance Ỹ n0
B using the TMM

method [37] for the n0-th modal contribution. Due to the reduced dimension of the min-
imization problem and to keep the computational cost of this minimization procedure as
low as possible, the Nelder-Mead Simplex Method has been used [112]. Also, to preserve
the restrictions on the arguments of the minimization problem (i.e., the right sign on MP,
δP, Re(ρP), and Im(ρP)), a classical quadratic transformation [153, Chapter 7] has been
used to handle these constrained optimization problems.

Consequently, since this fitting procedure is repeated in a frequency-by-frequency sweep-
ing, the use of this kind of derivative-free optimization algorithms guarantee the overall effi-
ciency of this methodology. Obviously, other optimization strategies could be used for this
purpose, such as genetic algorithms [157] or efficient global optimization procedures [129].

As it has been highlighted in Remark 2.3.9, the inverse problem solved for the charac-
terization of porous materials has infinite (but countable) solutions due to phase changes
on the wave number values. Since, the primal unknowns δP(ω) and δQ(ω) drive the com-
plex phase of βn0

P (ω) and βn0
Q (ω), respectively, the drawback of multiple solutions could

lead to a discontinuous behavior with respect to the frequency of these unknowns in the
solution of the minimization problems (2.17) and (2.18). Consequently, to guarantee a con-
tinuous behavior of the primal unknowns with respect to the frequency, five simultaneous
strategies have been utilized to complement the use of the Nelder-Mead method: (a) for
a given set of angular frequency values, problems (2.17) and (2.18) are solved sequentially
from the highest frequency to the lowest one; (b) the initial guess in the minimization
method for the highest frequency have been computed (see Remark 2.5.1) by assuming
that βn0

P ≈ βn0
F − 10i and ZP ≈ ZF − iRe(1/YI) (analogous considerations are made for

the initial guesses of quantities related to the second porous layer in ΩQ); (c) the initial
guess for subsequent frequencies are given by the solution of the previous solution for a
higher frequency; (d) the low-frequency limit of the real part of the dynamic mass density
is assumed known (in order to fix the value of the wave number phase at lowest frequencies
as it is described in Remark 2.3.9), and (e) an unwrapping procedure is performed on the
frequency dependent values of βP(ω) and βQ(ω) to avoid possible jump discontinuities. All
these strategies have been used to obtain the numerical results presented in the following
section.

Remark 2.5.1. The initial guesses for the imaginary parts of the porous wave number
and characteristic impedance have been derived from the expression of the input impedance
of a porous layer of thickness d backed by a rigid wall, ZI(ω) = ZP(ω)/ tanh(iβn0

P (ω)d).
Assuming that the porous layer is highly absorbing at high frequencies, then Im(βn0

P (ω))� 0,
and so | tanh(iβn0

P (ω)d))| ≈ 1. Due to the exponential decreasing behavior of tanh, it
is enough to assume Im(βn0

P (ω)) ≈ −10 to obtain | tanh(iβn0
P (ω)d))| ≈ 1. On the other

hand, at the frequency range of the present chapter, Re(βn0
P (ω)d) � Im(βn0

P (ω)d). Hence,
neglecting the imaginary part of the wave number, tanh(iβn0

P (ω)d)) ≈ tanh(iRe(βn0
P (ω))d)
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whose real part is null. So, ZI(ω) ≈ iZP(ω)| tanh(iRe(βn0
P (ω))d)| ≈ iZP(ω) and hence

ImZP ≈ −Re(1/YI).

2.5.2 Parametric JCAL approach

As it is explained in Section 1.2.2 in Chapter 1, the parametric JCAL model involves six
intrinsic parameters: α∞, σ, φ, Λ, Λ′, and k′0. Hence, instead of using a fitting procedure
which computes a frequency-by-frequency inverse problem independently (as in the non-
parametric approach), in the JCAL case, the six constant parameters are fitted using the
entire frequency band data in a unique global optimization problem as follows. In the
single layer configuration, if a set of M different frequency values {ωj}Mj=1 are considered,
the minimization problem is given by

(α∞, σ, φ,Λ,Λ
′, k′0)

= arg min
α̃∞,σ̃,k̃′0>0

0<φ̃,Λ̃,Λ̃′<1

M∑

j=1

(
|YI(ωj)− Y JCAL

I (ωj, n0, Y
n0

B (ω), α̃∞, σ̃, φ̃, Λ̃, Λ̃
′, k̃′0)|2

|YI(ωj)|2

+
|ỸI(ωj)− Y JCAL

I (ωj, n0, Ỹ
n0

B (ωj), α̃∞, σ̃, φ̃, Λ̃, Λ̃
′, k̃′0)|2

|ỸI(ωj)|2

)
, (2.19)

where Y JCAL
I (ω, n0, Y

n0
B , α̃∞, σ̃, φ̃, Λ̃, Λ̃

′, k̃′0) is the surface admittance computed solving the
linear problem (2.7) with back admittance Y n0

B . The JCAL model (2.3)-(2.4) has been used
to replace the mass density ρP(ω) by ρP(ω) = ρ̂JCAL(α̃∞, σ̃, [φ̃, Λ̃, Λ̃

′, k̃′0)](ω), and the wave

number kP(ω) by kP(ω) = ω

√
[ρ̂JCAL(α̃∞, σ̃, φ̃, Λ̃, Λ̃′, k̃′0)](ω) / [K̂JCAL(α̃∞, σ̃, φ̃, Λ̃, Λ̃′, k̃′0)](ω).

Again, as in the non-parametric case, the TMM method has been used to compute the n0-th
modal contribution. The minimization problem with a double multilayer configuration can
be written similarly.

In the non-parametric approach, the initial guess used in the iterative optimization
procedure is computed following the estimates described in Remark 2.5.1. However, in the
case of the JCAL model, these estimates are not feasible, and a generic initial guess has
been considered for its six parameters, namely, α∞ = 1.06, σ = 40× 103 Nm−4s, φ = 0.94,
Λ = 5.6× 10−6 m, Λ′ = 1.1× 10−8 m, k′0 = 1.2 m2 in all the numerical simulations included
in Section 2.6.

2.6 Characterization results

In this section, some characterization results obtained with the proposed methodology
for different single and double layer configurations are analyzed. Surface admittance data
(the inverse of the surface impedance measured with the standardized impedance tube
method [1]) were used as input data for the proposed approach (open-access available
online), being the resulting effective acoustic properties compared with those obtained

https://doi.org/10.6084/m9.figshare.7898003.v2


58 Non-parametric porous characterization

using the JCAL model and the two-cavity method worked out by Utsuno et al. [171]. In all
the results, it has been considered the frequency range in which the acoustic pressure source
excites only the first transverse mode of the impedance tube and the model coefficients in the
fluid are given by the typical reference values taken from air, this is, ρF = 1.213 kg/m3 and
cF = 343 m/s (and those air-related values necessary for the parametric JCAL model (2.3)-
(2.4): η = 1.84 × 10−5 Pa s, PF = 101320 Pa, Pr = 0.702, and γ = 1.4). Figure 2.5 shows
the samples of porous materials used in the experimental measurements in both single and
double layer configurations.

Figure 2.5: Porous materials whose results are shown in this chapter: Recycled foam (#1)
(left); Recycled fibrous material (#4) (right) [150].

In the numerical comparison of the proposed non-parametric approach and the JCAL
parametric model, the same optimization procedure has been used with identical threshold
values in the convergence criteria, i.e., the convergence is considered reached once the value
of the cost function in problems (2.17) and (2.18) is smaller than 10−10.

2.6.1 Spurious oscillations

As it has been explained in Section 2.5, there exists a variety of coefficients which come
from the parametric models that could be used as primal unknowns in the the minimization
problem. An incorrect choice of these primal unknowns can ruin the results of the fitting,
or can lead to unusual behaviors of the unknowns. For instance, if the surface admittance
is computed in terms of the real and the imaginary part of the mass density ρP(ω), and the
bulk modulus KP(ω) as primal unknowns, the relative fitting error is ε = 6.25% (see Fig-
ure 2.6). However, although the error is small, as it is shown in Figures 2.7 and 2.8, spurious
oscillations distort the parameter frequency-response due to the exponential dependence of
the TMM matrix coefficients with respect to these acoustic quantities.

To mitigate this situation, instead of using the dynamic mass density and the dynamic
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Figure 2.6: Comparison of the experimental absorption values (solid blue line) with the
computed ones obtained by using the proposed non-parametric approach (dashed red line).
The chosen primal unknowns in the fitting problem are the real and the imaginary parts of
the mass density ρP(ω) and the bulk modulus KP(ω).

bulk modulus as primal unknowns, a novel pair of unknowns are chosen and the minimiza-
tion problem is rewritten by using δP(ω) = Re(βn0

P (ω))d and MP(ω) = eIm(β
n0
P (ω))d, where

βn0
P (ω) is the wave number of the porous material associated to the n0-th transverse mode

and d is the thickness of the porous layer (in Section 2.5.1 a detailed description of the new
unknowns and the minimization problem is given).

Figure 2.7: Frequency response of the real (left) and the imaginary (right) parts of the
mass density ρP(ω), which is one of the unknowns of the fitting problem, obtained using
the non-parametric approach.
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Figure 2.8: Frequency response of the real (left) and the imaginary (right) parts of the bulk
modulus KP(ω), which is one of the unknowns of the fitting problem, obtained using the
non-parametric approach.

2.6.2 Single layer case

Results for two different types of materials are shown: recycled foam (#1) of thickness
d = 32 mm and recycled fibrous material (#4) of thickness d = 45 mm (see Figure 2.5). The
experimental data used for the predictions are the surface admittance of a setup with the
single porous layer where the two datasets YI(ω) and ỸI(ω) involve a rigid backing respec-
tively, this is, Y 0

B = 0 and an air gap of thickness d = 0.02 m between the porous layer and
the rigid backing (so straightforward computations lead to Ỹ 0

B(ω) = YF(ω)/ tanh(iβ0
F(ω)d)

following the two-cavity method [171]).

Accordingly, the experimental data used in the fitting problem (2.17) are the surface
admittance of the setup with and without an air gap for each sample. Both the proposed
non-parametric method and the JCAL model (fitting problem (2.19)) use the same data.

In both cases for materials #1 and #4, the relative errors resulting from this fitting are
around 10−13% for the non-parametric approach (in the errors computed from the admit-
tance and the absorption responses). Figure 2.9 shows the absorption fitting computed by
using the non-parametric optimization procedure (labeled as “Opt”), using the Utsuno’s
two-cavity method [171], and computed with the parametric JCAL model for the mate-
rial #1 and #4. A similar comparison is also shown in Figure 2.10 for the characteristic
impedance and the wave number related to the porous layer. The accurate agreement
between the Utsuno closed-form expressions and the solution computed with the opti-
mization procedure described in Section 2.5 confirms the accuracy of the proposed general
approach for the analyzed cases. In the case of the parametric JCAL model, the computed
frequency-dependent values reproduce qualitatively the trends exhibited by the character-
istic impedance and the wave number for material #1 and #4 above 1000 Hz. However, for
lower frequency values, between 500 Hz and 1000 Hz, the JCAL estimates are not accurate,
and potentially it suffers from large deviations, reaching around 100% deviations with re-
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Figure 2.9: Comparison of the obtained absorption coefficient using the two-cavity method
(dot-dashed line), the non-parametric approach (dashed line), and the JCAL model (dotted
line) for the single layer porous material #1 (left) and material #4 (right).

spect to the actual value in the characteristic impedance related to the material #1 (see
Figure 2.10).

From the data used in this single case configuration, it can be observed the presence
of some perturbations at the low-frequency regime (below 500 Hz). So, the robustness of
the proposed non-parametric model has been studied with respect to the presence of noise
on the dataset used in the fitting problem (2.17). Firstly, the error variance on the surface
impedance data has been estimated (by considering a standard local linear Gaussian kernel
regression method [36]). Then, a sampling method has been used to replicate 500 frequency-
dependent curves, which have been used independently as input data in the fitting problem.

Figures 2.11 and 2.12 show the variability band of the surface impedance data (left plots)
and the characteristic impedance obtained utilizing the Utsuno closed-form expressions,
the proposed non-parametric methodology, and the JCAL model. It can be observed that
a wide variability on the surface impedance data leads to mild deviations on the fitted
frequency-dependent values. In fact, the variability bands obtained for the Utsuno closed-
form expressions and the proposed non-parametric approach nearly overlap, and they have
a similar extension since both procedures depend on computations performed within a
frequency-by-frequency algorithm. On the contrary, the variability band associated with
the JCAL model is negligible since the fitting problem to compute its six parameters uses
all the frequency-dependent input data at once, reducing the dependency of its parameter
values on the noisy low-frequency data exhibits by the surface impedance data.
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Figure 2.10: Comparison of the obtained characteristic impedance (top) and wave num-
ber (bottom) using the two-cavity method (dot-dashed line), the non-parametric approach
(dashed line), and the JCAL model (dotted line) for the single layer porous material #1
(left) and material #4 (right).

2.6.3 Double layer case

The data used in the previous single layer configuration needs to perform measurements
with a cavity behind the samples to determine its effective acoustic properties [171]. To
avoid such limitation, which is of great interest especially for thin lightweight samples as
mentioned previously, a double layer configuration can be analyzed. Obviously, the Utsuno
closed-form expressions are no longer valid, and fitting approaches are required. In what
follows, both the parametric JCAL model and the proposed non-parametric methodology
are compared in this double layer setting.

The multilayer problem under consideration is formed by the two porous layers of the
previous section (see Figure 2.5). Since now the unknown effective acoustic properties are
the dynamic mass density and the wave number of the two layers, i.e., Re(ρP), Im(ρP), MP,
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Figure 2.11: Comparison of the surface impedance data (left), and the wave number (right),
obtained by using the two-cavity method (dot-dashed line), the non-parametric approach
(dashed line), and the JCAL model (dotted line) for the single layer porous material #1.
The shadow regions highlight the variability bands on the data and the computed frequency
values responses.

Figure 2.12: Comparison of the surface impedance data (left), and the wave number (right)
obtained using the two-cavity method (dot-dashed line), the non-parametric approach
(dashed line), and the JCAL model (dotted line) for the single layer porous material #4.
The shadow regions highlight the variability bands on the data and the computed frequency
values responses.

δP, and Re(ρQ), Im(ρQ), MQ, and δQ, it is necessary to consider four surface admittance
datasets instead of two for the solution of the minimization problem (2.18). Note that in
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this case, the size of the fitting problem using the JCAL model increases to a total of twelve
parameters (six for each layer). In the present study, the experimental data used in the
fitting problem are the surface admittance of each porous layer separately with rigid back
admittance (Y 0

B = 0 and Ỹ 0
B = 0 in the datasets i) and iii) of the inverse Problem 2.4.1) and

additionally, the surface admittance data of two different double multilayer configurations
(only in the proposed approach), where the order of the porous layers have been inverted
(datasets ii) and iv) of the inverse Problem 2.4.1). In both of them, the backing condition
is assumed rigid, this is, Ŷ 0

B = 0 and Y̆ 0
B = 0. Once the minimization problem (2.18) has

been solved using these four datasets, the effective acoustic coefficients can be identified.

Figure 2.13: Comparison of the absorption coefficient associated with each of the four
admittance values Y 0

B (top-left), Ỹ 0
B (top-right), Ŷ 0

B (bottom-left), and Y̆ 0
B (bottom-right)

with respect to the fitted values obtained from the non-parametric approach with the double
layer configuration (label “2-opt”, dot-dashed line), the non-parametric approach with the
single layer configuration (label “1-opt”, dashed line), and the JCAL model with the double
layer configuration (dotted line).

To illustrate the accuracy of the proposed non-parametric model, the absorption co-
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efficients associated with each admittance value have been plotted in Figure 2.13, taking
into account the non-parametric approach with the double layer configuration, the non-
parametric approach with the single layer configuration, and the JCAL model with the
double layer configuration. Figures 2.14 and 2.15 show the characteristic impedance and
the wave number of both porous materials in this double layer configuration. Again, the
frequency-dependent responses for these values are compared using the non-parametric
approach (with double and single configurations), and the parametric JCAL model (in a
double layer case). In all cases, the predicted values in this double layer configuration repro-
duce consistently the fitted values obtained in the one layer configuration with negligible
differences above 500 Hz. For lower frequency values, the use of four different data sets
reduces notably the perturbations presented in the fitted values below 500 Hz (see the wave
number curves in the left plots of Figures 2.14 and 2.15).

Figure 2.14: Comparison of the characteristic impedance of the first layer (ZP(ω) on the
left) and the second layer (ZQ(ω) on the right) obtained using the non-parametric approach
with the double layer configuration (label “2-opt”, dot-dashed line), the non-parametric
approach with the single layer configuration (label “1-opt”, dashed line), and the JCAL
model with the double layer configuration (dotted line).

In addition, it can be seen that the use of a larger amount of input data in the double
configuration yields to a much better agreement with the JCAL model when compared to
the analogous results obtained in a single layer configuration (see, for instance, the more
accurate results obtained in the absorption profile of layer of material #4 in the top-right
plot of Figure 2.13 in comparison with respect to the analogous values reported in the right
plot shown in Figure 2.9).
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Figure 2.15: Comparison of the wave number of the first layer (kP(ω) on the left) and the
second layer (kQ(ω) on the right) obtained using the non-parametric approach with the
double layer configuration (label “2-opt”, dot-dashed line), the non-parametric approach
with the single layer configuration (label “1-opt”, dashed line), and the JCAL model with
the double layer configuration (dotted line).

2.7 Conclusions

A non-parametric approach was proposed to predict the effective acoustic properties
associated with a standard fluid-equivalent model, which governs the time-harmonic vi-
brations of porous materials with a rigid solid frame. The adopted procedure is based
on solving a sequence of frequency-by-frequency well-posed inverse problems, but without
the requirement of using any theoretical parametric model (e.g., the widely used paramet-
ric JCAL model). Hence, it is not necessary to determine intrinsic physical parameters
(required by the parametric models), and consequently, avoiding the use of sophisticated
laboratory equipment to measure those intrinsic parameters experimentally.

The main advantages of the proposed non-parametric approach are: i) no need for so-
phisticated laboratory equipment but only a standard impedance tube rig; ii) avoid the
constraints resulting from using a frequency-dependent parametric model in favor of a
sequential frequency-by-frequency strategy, which may be of great interest when charac-
terizing non-traditional porous materials whose acoustic properties have singular responses
(e.g., metamaterials) or when the assumptions of the standard parametric models are not
completely fulfilled; iii) reducing the number of unknowns in the fitting procedure when
compared to other inversion techniques requiring multiple parameters, especially when an-
alyzing multilayer configurations.

The well-posedness of the inverse problem has been analyzed in detail in Section 2.3
and 2.4 showing that the acoustic properties of a porous material can be accurately iden-
tified both for single and double porous layer configurations. At the contrary of other



2.7. Conclusions 67

inversion techniques, which uses large datasets or real-valued experimental datasets (such
absorption curves), thanks to the detailed analysis of the well-posedness character of the in-
verse problems in the single and double layer configurations, the proposed approach makes
use of the minimal amount of experimental complex-valued data (in the frequency regime)
obtained using only a standard two-microphone impedance tube setup.

The proposed methodology produces relative fitting errors smaller when compared with
those obtained using a parametric JCAL model, thus improving the characterization proce-
dure. Also, this method has been compared with the results obtained using the two-cavity
method proposed by Utsuno et al. for single layer configurations, showing a good agree-
ment. In comparison, the proposed methodology not only avoids the assumptions made by
the former but also allows broader applicability to single and multiple layer configurations.
In this latter regard, the need for characterization procedures that let tackle with light
and thin porous layers is of great interest because of the associated technical difficulties in
the experimental measurements, thus making this approach an interesting tool in the de-
sign stage of multilayer porous materials. In conclusion, and even though further research
is necessary to assess its range of applicability, the present work shows that the acoustic
properties of porous materials can be accurately predicted by adopting this non-parametric
methodology.
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3.1 Introduction

Elastomeric materials appear in many applications in the automotive, aerospace, or
naval industries because they can be used in passive structural vibration control, or noise
radiation techniques [114, 149, 152, 172]. These materials are polymers with a viscoelastic
mechanical behavior at ultrasound frequencies [80, 98]. The continuous arising of new ma-
terials in industrial problems, many of them with unknown properties, makes it necessary
a complete description of their acoustic behavior. In this chapter, a real-world scenario
is studied, considering a coupled problem formed by an absorbing tile with a viscoelastic
behavior surrounded by a fluid (water in this case). This viscoelastic layer has been nu-
merically characterized by using the frequency response of the echo reduction level, the
insertion loss, and the fractional power dissipation at ultrasonic frequencies. In order to
simplify the problem under study, a viscoelastic material with a planar surface has been
considered (in Chapter 4 the original non-planar surface of the viscoelastic material is taken
into account).

To perform the material characterization, a suitable choice of the viscoelastic model is
fundamental: the more appropriate the model is, the more accurate its mechanical response
will be in comparison with the experimental data. Well-known viscoelastic material models
such as Maxwell, Zener, and Kelvin-Voigt models [58, 81, 121], or the more recent fractional
derivative viscoelasticity models [14, 104] are common choices for modeling linear wave
propagation in viscoelastic materials. Usually, to estimate the unknown parameters, the
constitutive laws are first fixed, and then the available experimental data are fitted with
the response of the mathematical model. However, in this chapter, a data-driven approach
is considered [64, 86, 105]. This methodology avoids the need of choosing a constitutive law
for fitting. Instead of this, the fitting problem consists of minimizing the distance between a
set of experimental data and the computed values. Therefore, the choice of the viscoelastic
model is based only on the experimental ultrasound measurements, and not on imposing
any functional dependence of the parameters in terms of frequency.

In this chapter, a viscoelastic material has been characterized by using a data-driven ap-
proach instead of a classical parametric model. This material is part of a coupled problem
formed by the material surrounded by water. In Section 3.2, an analysis of the mathe-
matical modeling of the problem has been performed. First of all, in Section 3.2.1, the
mathematical models used in this chapter are described, including the classical paramet-
ric models, emphasizing the differences between the parametric and the non-parametric
approaches. Then, the coupled problem under consideration is described, and the acous-
tic quantities of interest, such as the reflection and the transmission coefficients, the echo
reduction level, the insertion loss, and the fractional power dissipation, are defined. The
direct problem of wave propagation in the multilayer medium is described in Section 3.3. A
complete description of the pressure fields (incident, scattered, and transmitted) by using
an integral representation is given in Section 3.3.1. Moreover, in Section 3.3.2, the reflection
and the transmission coefficients are computed in a plane wave framework. In Section 3.4,
the inverse problems for parametric and non-parametric approaches are described, taking
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into account different constitutive laws for the primal unknowns of the fitting problem, and
emphasizing the advantages and disadvantages of each used law. When the real and the
imaginary parts of the Young modulus are used as unknowns, the frequency response of
the levels under consideration presents spurious oscillations. Therefore, a change in the
primal unknowns is necessary, and the fitting problem in terms of these new unknowns is
described. Since to solve the fitting problems, a trust-region reflective algorithm is used,
and this algorithm needs the derivatives of the cost function, in Section 3.4.2, the adjoint
method is described. This method is used to compute the derivatives of the cost function ef-
fectively. Section 3.5 is devoted to presenting some numerical results. To validate the code,
some simulations with manufactured data are shown in Section 3.5.1. Then, a real-world
viscoelastic material is characterized by using the proposed methodology. In Section 3.5.2,
the available experimental data are presented. Figure 3.1 shows the material under con-
sideration, which is an absorbing tile of Apltile SF5048 material (see [5]). Sections 3.5.3
and 3.5.4 show the numerical results obtained by using parametric and non-parametric ap-
proaches, respectively. Hence, it is possible to compare them and to illustrate the efficiency
of the proposed approach. Section 3.6 shows the conclusions about the methodology. At
the end of this chapter, in Appendix 3.A, some considerations about the approximation of
the integrals used in the definition of the levels under consideration and in Appendix 3.B,
the computation of the derivatives of the cost functions are explained.

Figure 3.1: Detail of the absorbing tile of Apltile SF5048 material (see [5]).

Remark 3.1.1. Throughout this chapter, the time-harmonic dependence for the pressure
field (and for the displacement field) has been settled as π(p, t) = Re(Π(p)e−iωt), being π
the time-dependent acoustic pressure field, Π the complex-valued time-harmonic acoustic
pressure field, ω the angular frequency, t the time variable, p the Cartesian coordinates of
the spatial position, Re(·) the real part function of a complex number, and i the imaginary
unit.
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3.2 Mathematical modeling

To characterize the viscoelastic material, a coupled fluid-structure problem has been
considered. Then, in this section, the mathematical models of the layers involved in the
coupled problem are given, the coupled problem is described, and the acoustic quantities
of interest in this problem are defined.

3.2.1 Mathematical models

The coupled problem under study involves a viscoelastic layer (with the same param-
eters as the absorbing tile), and a compressible fluid surrounding it. In what follows, the
constitutive laws of both models are described in detail.

Compressible dissipative fluid

Taking into account the fluid dissipation (see [140] for further details), and considering
the acoustic pressure field π as the primal unknown, the time-dependent equation of motion
of a compressible dissipative fluid (which is assumed isentropic) is given by

1

ρFc2
F

∂2π

∂t2
+
α2

ρF

∂4π

∂t4
+

2α

ρFcF

∂3π

∂t3
− div

(
1

ρF

∇π
)

= 0,

where α is the attenuation coefficient, and ρF and cF are the mass density and the sound
speed of the fluid, respectively. Assuming harmonic solutions, π(p, t) = Re(e−iωtΠ(p)), the
motion equation is given by

− ω2

ρFc2
F

Π +
α2ω4

ρF

Π +
2iαω3

ρFcF

Π− div

(
1

ρF

∇Π

)
= 0.

If it is assumed that ρF is constant, and taking into account div∇Π = ∆Π, it holds
[
−ω

2

c2
F

+ αω4 +
2iαω2

cF

]
Π−∆Π = −

[
ω

cF

− iαω2

]2

Π−∆Π = 0. (3.1)

If kF(ω) = ω
cF
− iαω2 is the complex-valued wave number, then (3.1) can be written as

−k2
F(ω)Π−∆Π = 0,

which is the so-called Helmholtz equation.

Viscoelastic solid

Under the small deformations hypothesis (see [113]), the time-dependent linear equation
of motion for a viscoelastic solid (which is assumed homogeneous and isotropic), written in
terms of the displacement, is given by

ρV
∂2u

∂t2
− div(σ) = 0,
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where ρV is the mass density at the equilibrium state of reference, u is the displacement
field, and σ is the stress tensor. To choose the constitutive law for the stress tensor, two
different approaches can be followed: a parametric approach using well-known models, such
as the Maxwell or the Kelvin-Voigt model, or a non-parametric approach where it is not
required an a priori knowledge on the constitutive relations. The constitutive relation for
the stress tensor in the viscoelastic solid (see [88]) can be written as the time convolution
product

σij(p, t) =

∫ t

−∞
cijkl(t− τ)

∂εkl
∂t

(p, τ)dτ,

where ε =
∇u+∇ut

2
is the strain tensor, and c is the linear elasticity tensor. Once a time-

harmonic dependency is prescribed on the viscoelastic model, i.e., c(t) = Re(e−iωtC(ω))
and u(p, t) = Re(e−iωtU(p)), and drawing an analogy with Hooke’s law in the frequency
regime, the action of the tensor C on any tensor R (assuming Einstein notation) is given
by

Cijkl(ω)Rkl =
νE(ω)

(1− 2ν)(1 + ν)
Rkkδij +

E(ω)

(1 + ν)
Rij,

where ν is the Poisson’s ratio, E(ω) is the complex-valued Young modulus of the viscoelastic
material, and δij is the Kronecker’s delta. Hence, the time-harmonic displacement field
satisfies

−ω2ρVU − div(C(ω)Σ(U)) = 0,

being Σ(U) =
∇U +∇U t

2
.

3.2.2 Coupled problem

Once the mathematical models of the media involved in the problem under study have
been introduced, a multilayer planar configuration formed by a viscoelastic solid surrounded
by a compressible dissipative fluid (water in the case under study) is considered (see Fig-
ure 3.4). Let Ω1 and Ω3 be the domains occupied by the fluid, and ΩV the domain where the
viscoelastic layer is located. Both fluids are placed on unbounded domains (half-spaces),
and the thickness of viscoelastic tile is finite (denoted by l) but unbounded in the other
two Cartesian coordinates. The coupled interfaces Γ1 and Γ2, between the first fluid and
the viscoelastic solid, and between the viscoelastic solid and the second fluid, respectively,
are located on the planes p1 = 0 and p1 = l, i.e., Γ1 and Γ2 are defined by

Γ1 ={p = (p1, p2, p3) ∈ R3 : p1 = 0},
Γ2 ={p = (p1, p2, p3) ∈ R3 : p1 = l}.

Both interfaces are perpendicular to the Cartesian p1-axis, so the unit normal vector on
Γ1 and Γ2 is n = e1. On both interfaces, kinetic and kinematic coupled conditions are
considered to preserve the continuity of normal displacements and the normal tensions. To
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write the formulation of the coupled problem, the equation of motion of the compressible
fluid has been expressed in terms of the pressure field, and the equation of motion of the
viscoelastic model in terms of the displacement field. This coupled problem is given by: for
a fixed angular frequency ω > 0, find the acoustic pressure fields in the first and last fluid
Πtot,1 = Πscat + Πinc and Πtot,3 = Πtransm, and the displacement field UV in the viscoelastic
medium such that

−k2
F(ω)(Πtot,1)−∆Πtot,1 = 0 in Ω1,

−ω2ρVUV − div(C(ω)Σ(UV)) = 0 in ΩV,
−k2

F(ω)Πtot,3 −∆Πtot,3 = 0 in Ω3,
U1 · n = UV · n on Γ1,
−Πtot,1 = C(Σ(UV))n · n on Γ1,
UV · n = U3 · n on Γ2,

C(Σ(UV))n · n = −Πtot,3 on Γ2,





(3.2)

where U1 and U3 are the displacement field in the first and last fluid, respectively, and
Σ(UV) is the strain tensor in the frequency regime. Additionally, in order to guarantee
there is no waves coming from the second fluid towards the viscoelastic solid, a radiation
condition is imposed on the displacement field on the displacement field U3 at infinity.

3.2.3 Acoustic quantities of interest

In this section, some coefficients and levels of interest for the problem under studied
are defined. Since an underwater environment is considered, the acoustic pressure field is
measured by using a hydrophone, located at the field point pm = (p1m, p2m, p3m).

Definition 3.2.1 (Reflection coefficient). The reflection coefficient on the interface Γ1 is
the ratio of the scattered pressure to that of the incident pressure, that is,

R(pm) =
Πscat(pm)

Πinc(pm)

∣∣∣∣
Γ1

, pm ∈ Ω1, (3.3)

where Πscat and Πinc are the acoustic pressure scattered from the sample and the acoustic
pressure incident upon the sample, respectively.

Definition 3.2.2 (Transmission coefficient). The transmission coefficient is defined as the
ratio of the transmitted pressure to that of the incident pressure.

T(pm) =
Πtransm(pm)

Πinc(pm)
, pm ∈ Ω3, (3.4)

where Πtransm is the acoustic pressure transmitted from the sample and Πinc is the acoustic
pressure incident upon the sample.

Definition 3.2.3 (Echo Reduction). The Echo Reduction level (ER) is given by

ER(pm) = −20 log10 |R(pm)| , (3.5)

where R is the reflection coefficient defined in (3.3).
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Definition 3.2.4 (Insertion Loss). The Insertion Loss (IL) is defined by

IL(pm) = −20 log10 |T(pm)| , (3.6)

where T is the transmission coefficient defined in (3.4).

Definition 3.2.5 (Fractional Power Dissipation). The Fractional Power Dissipation (FPD)
is given by

FPD(pm) = 1− |R(pm)|2 − |T(pm)|2 , (3.7)

where R and T are the reflection and the transmission coefficients, respectively.

p3m

p3m

l

p3m

p3m

l

Figure 3.2: Experimental setup used to measure the incident, scattered, and transmitted
pressure fields. The viscoelastic material is highlighted in blue. The position p3m in the
p3-axis is the position of the hydrophone which is located in front of, or behind the sample
depending on the measured coefficient. The directivity pattern S(θ) is highlighted in red.
Left: The considered acoustic source is a plane wave. Right: The acoustic source has a
non-planar directivity pattern.

3.3 Statement of the direct problem: wave propaga-

tion in a multilayer medium

To obtain a complete characterization of the viscoelastic material, the frequency re-
sponse of the echo reduction level, the insertion loss, and the fractional power dissipation
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have been considered. Although the acoustic propagation in a multilayer medium can be
computed by using plane waves, since the available experimental data have been measured
in an NPL Acoustic Pressure Vessel, instead of using a conventional linear source trans-
ducer, a parametric array is used as the acoustic source, following [17]. Since the acoustic
field is represented in terms of a linear combination of plane waves with different angles of
incidence, the effect of the panel under test in each component of the spectrum is consid-
ered. In this section, the computation of the incident, scattered, and transmitted pressure
fields are described by using an integral representation. The reflection and the transmission
coefficients in a plane-wave framework are involved in the computation of these pressure
fields. Hence, in this section, a plane wave propagation problem is described, explaining
how the reflection and the transmission coefficients are calculated.

3.3.1 Integral representation of pressure fields

In this section, the incident, the scattered, and the transmitted pressure fields are rep-
resented in terms of a plane wave spectrum. When a non-planar wave impinges in a plane
interface between two media, difficulties can arise due to the difference between the form
of the boundary and the symmetry of the wave. To overcome the problem, the non-planar
wave is expanded into plane waves, following [37]. In what follows, the media are assumed
dissipative compressible fluids to ensure that the wave number k is complex-valued. Such a
feature implies that the fundamental solutions (spherical waves) are spatially damped, and
hence belong to L2(R3). Consequently, a Fourier analysis approach can be applied in this
context rigorously.

The spherical wave can be written as eikR/R, where k is the wave number, and assuming
that the source is located at the origin, R = |p| =

√
p2

1 + p2
2 + p2

3. If the plane p3 = 0 is

considered, the spherical wave can be written as eikr/r, where r =
√
p2

1 + p2
2. This field can

be expanded by using the inverse Fourier transform

eikr

r
=

∫ ∞

−∞

∫ ∞

−∞
A(ξ1, ξ2)ei(ξ1p1+ξ2p2)dξ1dξ2, (3.8)

being

A(ξ1, ξ2) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

ei(kr−ξ1p1−ξ2p2)

r
dp1dp2, (3.9)

and using polar coordinates

ξ1 = ξ cosψ, ξ2 = ξ sinψ, ξ =
√
ξ2

1 + ξ2
2 ,

p1 = r cosφ, p2 = r sinφ.

Then, Equation (3.9) results

A(ξ1, ξ2) =
1

(2π)2

∫ 2π

0

dφ

∫ ∞

0

eir(k−ξ cos(ψ−φ))dr. (3.10)
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Since a dissipative compressible fluid is considered, Imk > 0, so eikr → 0 at r → ∞, and
the integral over r results

∫ ∞

0

eir(k−ξ cos(ψ−φ))dr =
i

k − ξ cos(ψ − φ)
,

and (3.10) can be written as

A(ξ1, ξ2) =
i

(2π)2

∫ 2π

0

1

k − ξ cos(ψ − φ)
dφ =

i

(2π)2

∫ 2π

0

1

k − ξ cos φ̃
dφ̃ =

i

2π
√
k2 − ξ2

.

Therefore, if it is considered the notation ξ3 =
√
k2 − ξ2, (3.8) results

eikr

r
=

i

2π

∫ ∞

−∞

∫ ∞

−∞

ei(ξ1p1+ξ2p2)

ξ3

dξ1dξ2.

This expression, which describes the field in the p3 = 0 plane, can be extended into the
whole space. Each Fourier component corresponds to a plane wave in the space. To achieve
this, it is necessary to add the iξ3p3 term in the exponent in the integrand, when p3 > 0,
which corresponds to the waves propagating in the positive p3-axis, and to add the term
−iξ3p3 when p3 < 0, which corresponds to the waves propagating in the negative p3-axis,
that is,

eikR

R
=

i

2π

∫ ∞

−∞

∫ ∞

−∞

ei(ξ1p1+ξ2p2+ξ3|p3|)

ξ3

dξ1dξ2. (3.11)

This expression is the expansion of a spherical wave into plane waves. Now, it is possible to
compute (3.11) over the angles θ and φ (see Figure 3.3) by using the spherical coordinates

ξ1 = k sin θ cosφ, ξ2 = k sin θ sinφ, ξ3 = k cos θ,

where φ ∈ [0, 2π]. Now, the limits of θ are computed. By the definition of ξ3, ξ3 =√
k2 − ξ2 =

√
k2 − ξ2

1 − ξ2
2 . If ξ1 = ξ2 = 0 then ξ3 = 0 and θ = π

2
. If ξ1 → ±∞ and

ξ2 → ±∞, ξ3 =
√−∞ = i∞ and θ = π

2
− i∞. Then, ξ3 ∈ [0, i∞] and θ = [0, π

2
− i∞].

Moreover,
dξ1dξ2

dθdφ
=

∣∣∣∣
k cos θ cosφ −k sin θ sinφ
k cos θ sinφ k sin θ cosφ

∣∣∣∣ = k2 sin θ cos θ. (3.12)

By using (3.12), the integral in (3.11) can be calculated over the angles θ and φ as follows

eikR

R
=

i

2π

∫ π/2−i∞

0

∫ 2π

0

ei(ξ1p1+ξ2p2+ξ3|p3|) sin θ dφ dθ. (3.13)

Considering the geometry in Figure 3.3, and following [95], if s = (0, 0, s) is the position of
an element of the line array, the incident pressure field at a field point pm = (p1m, p2m, p3m)
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h

s

θ

p3

φ

k

p1

p2

pm

Figure 3.3: Scheme of the geometry used to compute the plane wave spectrum of the
parametric array.

in front of the panel can be calculated by integrating over the incident field components.
That is, the incident pressure field can be written as

Πinc(pm) = Q0

∫ h

0

eikF(ω)s e
ikF(ω)r

r
ds, (3.14)

where kF(ω) is the wave number of the fluid, r = R− s, h is the length of the parametric
array, and Q0 is a constant determined by the strength of the array. For the sake of
simplicity, the dependency of ω in the fluid wave number kF is omitted below. Taking into
account (3.13), the spherical wave term eikFr

r
can be expanded into plane waves, and using

spherical coordinates, results

eikFr

r
=
ikF

2π

∫ π/2−i∞

0

∫ 2π

0

eik·r sin θ dφ dθ, (3.15)

where (θ, φ) is the direction of the wave vector k, kF = |k|, with θ the angle measured from
p3-axis and φ the angle measured from p1-axis. Considering (3.15), the incident pressure
field (3.14) results

Πinc(pm) =
ikF

2π

∫ π/2−i∞

0

∫ 2π

0

S(θ, φ)eik·r sin θ dφ dθ, (3.16)

where S(θ, φ) is the plane wave spectrum of the truncated parametric array of length h,
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and is given by

S(θ, φ) = Q0

∫ h

0

eikFse−ik·sds.

In the considered geometry (see Figure 3.3), k · s = kFs cos θ, and

S(θ) = Q0

∫ h

0

eikFs(1−cos θ)ds = Q0
eikFh(1−cos θ) − 1

ikF(1− cos θ)
, (3.17)

that is, the plane wave spectrum is a function of θ only. Then, considering p3m the field
point on the p3-axis in front of the sample and the symmetry of the acoustic field about
the p3-axis, the incident pressure field, given by (3.16), can be written as

Πinc(pm) = ikF

∫ π
2
−i∞

0

S(θ)eikFp3m cos θ sin θ dθ. (3.18)

Following a similar argument, the transmitted acoustic pressure field, Πtransm(pm), at a field
point pm beyond the sample, can be calculated by integrating over the transmitted field
components (see [95]), that is,

Πtransm(pm) =
ikF

2π

∫ π
2
−i∞

0

∫ 2π

0

S(θ, φ)T(pm)eik·pm sin θ dφ dθ, (3.19)

where T(pm) is the transmission coefficient of the inserted panel, given by (3.4). Since in
the considered geometry the plane wave spectrum is a function of θ only, the transmitted
acoustic pressure field (3.19), at a field point p3m on the p3-axis beyond the sample, is

Πtransm(pm) = ikF

∫ π
2
−i∞

0

S(θ)T(pm)eikFp3m cos θ sin θ dθ, (3.20)

where S(θ) the plane wave spectrum given by (3.17).
The scattered pressure field Πscat at a field point pm in front of the sample can be calculated
by integrating over the scattered field components, that is,

Πscat(pm) =
ikF

2π

∫ π
2
−i∞

0

∫ 2π

0

S(θ, φ)R(pm)eik·pm sin θ dφ dθ, (3.21)

where R(pm) is the reflection coefficient of the inserted panel, given by (3.3). Considering
the geometry described in Figure 3.3, the scattered acoustic pressure field (3.21), at a field
point p3m on the p3-axis in front of the sample, can be written as

Πscat(pm) = ikF

∫ π
2
−i∞

0

S(θ)R(pm)eikFp3m cos θ sin θ dθ, (3.22)

where S(θ) the plane wave spectrum given by (3.17).
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ikFp1

−A3e
−ikFp1

p1 = 0 p1 = l

solid
Viscoelastic

B1e
ikFp1 BVl

eikVl
p1

−A1e
−ikFp1 −AVle

−ikVl
p1

Figure 3.4: Geometrical configuration of the considered multilayer problem, which is formed
by a viscoelastic solid, surrounded by a fluid. Arrows from left to right (resp., from right to
left) denote the propagative direction of the incident waves (resp. reflected waves) in each
medium. The coefficients Aj and Bj with j = 1, 3 (resp. AVl

and BVl
) are the frequency-

dependent complex amplitudes, which corresponds to the reflection and transmission co-
efficients associated with the displacement fields in the fluids (resp. in the viscoelastic
solid).

3.3.2 Computation of reflection and transmission coefficients by
using a plane-wave framework

Integral expressions used to compute scattered and transmitted pressure fields described
in the previous section involve the reflection and the transmission coefficient of the panel for
an oblique incident wave. To describe these coefficients, a multilayer medium formed by a
fluid, a viscoelastic layer, and another fluid is studied. If an incident plane wave is impinging
on the viscoelastic layer with an incidence angle θ1, the complex-valued displacement in each
medium is given by a linear combination of transmitted and reflected plane waves. In fact,
the displacement fields in both fluids are given only by a linear combination of longitudinal
waves. However, straightforward computations show that the displacement field in the
viscoelastic solid is given not only by longitudinal waves but also by transversal waves.

In the frequency domain, the displacement field in both fluids (medium 1 and medium 3)
at oblique incidence can be written as

Uj(p) =(−AjeikF(− cos θjp1+sin θjp2) +Bje
ikF(cos θjp1+sin θjp2)) cos θje1

+ (Aje
ikF(− cos θjp1+sin θjp2) +Bje

ikF(cos θjp1+sin θjp2)) sin θje2, j = 1, 3,
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where Aj and Bj with j = 1, 3, are frequency-dependent complex constants which can be
viewed as the reflection and transmission coefficients between each medium, θ1 and θ3 are
the incident angles in the first and the last fluid, respectively, and kF is the wave number
of the fluid, given by kF = ω/cF, being cF the sound velocity in the fluid.

Since the pressure field is defined as

Πj = −ρFc
2
F divUj, j = 1, 3,

the pressure field of both fluids Πj with j = 1, 3, at oblique incidence can be written as

Πj(p) = −iωZF

(
Aje

ikF(− cos θjp1+sin θjp2) +Bje
ikF(cos θjp1+sin θjp2)

)
,

being ZF the characteristic impedance of the medium, given by ZF = ρFcF.

The displacement field of a viscoelastic solid UV is given by a linear combination of
longitudinal waves, where the oscillations occur in the direction of wave propagation, and
transverse waves, where the particles displacement due to the plane wave is perpendicular
to the direction of propagation. Then the displacement field at oblique incidence can be
written as

UV(p) = UVl
(p) +UVt(p)

=
[
(−AVl

eikVl
(− cos θVl

p1+sin θVl
p2) +BVl

eikVl
(cos θVl

p1+sin θVl
p2)) cos θVl

+(AVte
ikVt (− cos θVtp1+sin θVtp2) −BVte

ikVt (cos θVtp1+sin θVtp2)) sin θVt

]
e1

+
[
(AVl

eikVl
(− cos θVl

p1+sin θVl
p2) +BVl

eikVl
(cos θVl

p1+sin θVl
p2)) sin θVl

+(AVte
ikVt (− cos θVtp1+sin θVtp2) +BVte

ikVt (cos θVtp1+sin θVtp2)) cos θVt

]
e2,

where AVl
, BVl

, AVt , and BVt , are frequency-dependent complex constants which can be
viewed as the reflection and transmission coefficients between each medium, θVl

and θVt are
the incident angles of the longitudinal and transverse waves in the viscoelastic solid, and

kVl
and kVt are the wave numbers given by kVl

=
ω

cVl

and kVt =
ω

cVt

where cVl
=

√
λ+ 2µ

ρV

is the sound velocity of the longitudinal waves, and cVt =

√
µ

ρV

is the sound velocity of the

transverse waves, being ρV is the mass density of the viscoelastic solid, and λ and µ the Lamé

coefficients associated to the material, given by λ =
νE

(1− 2ν)(1 + ν)
and µ =

E

2(1 + ν)
,

respectively.

To compute the constants which determine the plane waves, it is necessary to solve
the propagation problem (3.2). Introducing the characteristic impedances, ZF = ρFcF and
ZV = ρVcVt , the linear system to solve is
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ikVt cos θVt lBVt = 0,

(3.23)
where the unknowns are the constants A1, A3, B3, AVl

, BVl
, AVt , BVt , and B1 is the ampli-

tude of the incident wave in the first compressible fluid that spreads to other media, which
has been assumed as known.

Once the system (3.23), by using the solutionsA1, B1, A3, B3, AVl
, BVl

, AVt , BVt is straight-
forward to compute the reflection and the transmission coefficients taking into account

Πinc = −iωZFA1,

Πscat = −iωZFB1,

Πtransm = −iωZFB3.
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3.4 Acoustic characterization of a viscoelastic solid us-

ing an inverse problem

Once the acoustic mathematical models have been described, the multilayer problem
under study has been explained and the acoustic quantities have been defined, the following
section focuses on the numerical solution of an inverse problem. The only known data of
the polymer tile are its dimensions, its mass density, and the frequency response of the echo
reduction level, the insertion loss, and the fractional power dissipation. Since to get the
acoustic characterization of an absorbing tile by using a viscoelastic model, it is necessary
to know its Poisson’s ratio and its Young modulus, the purpose of this inverse problem is to
find the values of the real and the imaginary parts of Young modulus, E ′ y E ′′, respectively,
which provide a frequency response as close as possible to that provided by experimental
measurements. In the numerical simulations, the value of Poisson’s ratio is supposed known
according to the literature (see Remark 3.4.1).

Remark 3.4.1. It is well-known that the Lamé coefficients associated to the material, λ
and µ, are given by

λ =
νE

(1− 2ν)(1 + ν)
,

µ =
E

2(1 + ν)
.

Then, the Poisson’s ratio is given by ν =
λ

2(λ+ µ)
. Since the numerator and the denom-

inator depend on the Young modulus, it is redundant to consider the Poisson’s ratio as
unknown.

3.4.1 Constitutive laws for the primal unknowns

In this section, a detailed study about different constitutive laws that can be assumed
for the primal unknowns is shown. First of all, a discussion about the ill-posedness of the
optimization problem is given. Then, different constitutive laws for the primal unknowns
are considered, some of them following a parametric model and other ones following a non-
parametric approach. Moreover, a study about the primal unknowns of the problem is
done. Firstly, the unknowns are the real and the imaginary parts of the Young modulus.
By using these unknowns appear spurious oscillations which are overcome considering a
new pair of unknowns depending on the wave number and the thickness of the material.
The inverse problem to solve and the cost function to be minimized have been described in
each case.

Characterization with real-valued datasets

For a fixed frequency value ω, it is assumed that the propagation problem (3.2) is
solved with the values of one real-valued level L(ω) (in this chapter ER, IL, or FPD). The
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characterization problem can be stated as follows:

Problem 3.4.2 (Inverse problem with a real-valued level dataset). For a fixed frequency
value ω, find the complex-valued coefficients E(ω), assuming that only the values of one
level L(ω) is known, obtained by solving the problem (3.2).

Lemma 3.4.3. Problem 3.4.2 is ill-posed in the sense that there exists an innumerable
number of solutions due to the lack of observation data.

Proof. The simplest case is considered, that is, a plane wave with incidence angle θ1 = 0
and amplitude 1 is considered. Then, B1 = 1, and the system (3.23) results

−A1 + AVl
−BVl

= −1, (3.24)

A1 −
ZV

ZF

AVl
− ZV

ZF

BVl
= −1, (3.25)

−e−ikVl
lAVl

+ eikVl
lBVl

− eikFlB3 = 0, (3.26)

e−ikVl
lZV

ZF

AVl
+ eikVl

lZV

ZF

BVl
− eikFlB3 = 0. (3.27)

By definition, the echo reduction level is ER = −20 log 10
|A1|
|B1|

= −20 log10 |A1|. To proof

that the problem is ill-posed, it is enough to proof that there exist infinite values of A1

which lead to the same echo reduction level. Subtracting (3.24) and (3.25), and (3.26)
and (3.27),

A1 =
1

2

[(
1 +

ZV

ZF

)
AVl

+

(
−1 +

ZV

ZF

)
BVl

]
, (3.28)

AVl
=

(
1− ZV

ZF

)

(
1 +

ZV

ZF

)BVl
e2ikVl

l. (3.29)

By using (3.29) in (3.24), and in (3.28),

A1 = AVl
−BVl

+ 1 =

(
1− ZV

ZF

)

(
1 +

ZV

ZF

)BVl
e2ikVl

l −BVl
+ 1

=

(
ZF − ZV

ZF + ZV

e2ikVl
l − 1

)
BVl

+ 1. (3.30)

A1 =
1

2

(
1− ZV

ZF

)(
e2ikVl

l − 1
)
BVl
⇒ BVl

=
A1

1
2

(
1− ZV

ZF

)(
e2ikVl

l − 1
) . (3.31)
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By using (3.31), Equation (3.30) results

A1 = 1 +

(
ZF − ZV

ZF + ZV

e2ikVl
l − 1

)
A1

1
2

(
1− ZV

ZF

)(
e2ikVl

l − 1
)

⇒ A1


1−

2ZF

(
ZF − ZV

ZF + ZV

e2ikVl
l − 1

)

(ZF − ZV)
(
e2ikVl

l − 1
)


 = 1.

Now, the goal is to find Z̃V and k̃Vl
such that

1−
2ZF

(
ZF−Z̃V

ZF+Z̃V
e2ik̃Vl

l − 1
)

(
ZF − Z̃V

)(
e2ik̃Vl

l − 1
) = eiφ


1−

2ZF

(
ZF−ZV

ZF+ZV
e2ikVl

l − 1
)

(ZF − ZV)
(
e2ikVl

l − 1
)


 ,

with φ arbitrary, φ ∈ [−π, π). Solving Z̃V and assuming k̃Vl
= kVl

,

Z̃2
V

[(
e2ikVl

l − 1
) (
Z2

F − Z2
V

) (
eiφ − 1

)
+ 2ZFe

iφ
(
(ZF + ZV)− (ZF − ZV)e2ikVl

l
)]

+Z̃V

[
2ZF

(
Z2

F − Z2
V

) (
e2ikVl

l + 1
)]
− Z2

F

(
e2ikVl

l − 1
) (
Z2

F − Z2
V

) (
eiφ − 3

)

+2Z3
Fe

iφ
(
(ZF − ZV)e2ikVl

l − (ZF + ZV)
)

= 0.

Since φ is arbitrary, there are infinite solutions for Z̃V. Then, There exist an innumerable
number of solutions of A1 with arbitrary phases and the same modulus.

Parametric optimization

First of all, a parametric optimization has been performed. The Young modulus, which
is the considered primal unknown, is a linear function of the frequency, following the Kelvin-
Voigt model [58, 81, 121]. Then, the real and the imaginary parts of Young modulus are
considered constants. More precisely, following [124], it was considered that the Young
modulus of the polymer tile could be written as

E = E ′ − iωE ′′,

where E ′ and E ′′ are assumed constant. Let L exp
j be the experimental values obtained by

measuring the level under study, for j = 1, . . . , NL, being NL the number of considered
frequencies, and let L̂(E ′, E ′′, ωj) be the computed numerical values of the level under
consideration, for j = 1, . . . , NL, where E ′ and E ′′ are the real and the imaginary parts of
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the Young modulus, and ωj is the studied angular frequency. If the cost function is defined
as

ΦL(E ′, E ′′) =

√√√√
NL∑

j=1

|L exp
j − L̂(E ′, E ′′, ωj)|2

√√√√
NL∑

j=1

|L exp
j |2

, (3.32)

the fitting problem is stated as follows: Find the values E ′∗ ≥ 0 and E ′′∗ ≥ 0, such that
minimize the difference between the experimental and the numerical values, i.e.,

(E ′∗, E
′′
∗ ) = arg min

E′, E′′>0
ΦL(E ′, E ′′), (3.33)

where E = E ′ − iωE ′′ is the Young modulus with E ′ and E ′′ constants, and L is the level
that is fitted (in this chapter L can be the echo reduction level, the insertion loss or the
fractional power dissipation).

The used optimization strategy, which is based on exhaustive search algorithms, con-
sists of minimizing a cost function on progressively finer grids. Although the algorithm is
computationally more expensive, this strategy allows us to find the absolute minimum of
a function of two variables in successive refined two-dimensional Cartesian discrete grids.
This strategy performs an exhaustive multigrid search among the values reached by the
objective function in a discrete set of positions. The implemented function has as input
the lower (am and bm) and the upper endpoints (Am and Bm) of the interval where the real
and the imaginary parts of the Young modulus are looking for. A grid of points contained
in [am, Am] × [bm, Bm], in the iteration m, is generated to evaluate the cost function and
find the minimum at these points. The endpoints of the intervals in which the minimum
is searched in both variables are chosen as follows: firstly, a grid of points is considered,
covering a rectangle region where the location of the absolute minimum is guessed. Then,
an exhaustive search algorithm finds the absolute minimum on the grid points. Finally,
the rectangle region is reduced by a fixed factor, but always centering on the grid point
where the absolute minimum on the grid is placed. So, in a finite number of iterations, the
minimum value is located with a given tolerance, determined by the distance between the
grid points.

Non-parametric optimization

In order to improve the results obtained by assuming that both the real and the imag-
inary parts of the Young modulus are constants, it is assumed that the Young modulus is
governed by an arbitrary smooth frequency-dependent function, that is, the real and the
imaginary parts of the Young modulus are governed by an arbitrary function that depends
on the angular frequency. Let L exp

j be the experimental values obtained by measuring the
level under study, for j = 1, . . . , NL, being NL the number of considered frequencies, and
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let L̂(E ′j, E
′′
j , ωj) be the computed numerical values of the level, for j = 1, . . . , NL, where

E ′j and E ′′j are the real and the imaginary parts of the Young modulus for each value of the
angular frequency ωj. For each value of ωj, the cost function is defined as

ΨL(E ′j, E
′′
j , ωj) =

|L exp
j − L̂(E ′j, E

′′
j , ωj)|2

|L exp
j |2

, ∀j = 1, . . . , NL. (3.34)

Then, the fitting problem is stated as follows: Find the values E ′j∗ ≥ 0 and E ′′j∗ ≥ 0, such
that minimize the difference between the experimental and the numerical values, i.e.,

(E ′j∗, E
′′
j∗) = arg min

E′j , E
′′
j >0

ΨL(E ′j, E
′′
j , ωj), ∀j = 1, . . . , NL, (3.35)

where Ej = E ′j − iE ′′j , and L is the level that is fitted (in this chapter L can be the echo
reduction level, the insertion loss, or the fractional power dissipation). As in the parametric
approach, a brute-force fitting is used to solve the optimization problem. After performing
the fittings shown above, it is observed that the use of E ′ and E ′′ as primal unknowns
leads to results where both the real and the imaginary parts of the Young modulus present
spurious oscillations (see Section 3.5.4 for more details). In order to overcome the problem,
and to get smoother frequency responses of the parameters, new unknowns should be chosen.

To choose the new unknowns properly, it is necessary to highlight that the oscillatory
behavior comes from the computation of the scattered and the transmitted pressure fields.
As it can be observed in Equations (3.22) and (3.20), the reflection and the transmission
coefficients of a plane wave propagation problem are involved in these integral expressions,
and both coefficients are computed by using the linear system (3.23). In this linear sys-
tem, the exponential dependence of the coefficients with respect to the value of the Young
modulus can be fully appreciated. This fact also implies that the fitting results are highly
dependent on the initial guess: small changes in the initial guess lead to pretty different
numerical results. To mitigate this situation, instead of using the unknowns E ′ and E ′′

in the fitting procedure, a novel pair of unknowns, δ = Re(kVl
)l and M = eIm(kVl

)l, has
been considered, where recall that kVl

is the wave number of the longitudinal waves in the
viscoelastic medium, and l is the thickness of the viscoelastic layer. Hence, the exponential
dependence of the transmission and reflection coefficients with respect to the unknowns is
avoided.

The exponential terms depending on the Young modulus in the system (3.23) can
be rewritten in terms of δ = Re(kVl

)l and M = eIm(kVl
)l. Then, keeping in mind that

ZV = ρVcVt = ρV
ω

kVt

=
ρVωl

δ + i logM
, the system (3.23) is rewritten as
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(3.36)
where B1 is the amplitude of the incident wave in the first compressible fluid that spreads
to other media, which has been assumed as known.
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Then, by using this change of unknowns, the reflection and the transmission coeffi-
cients can be computed, avoiding the spurious oscillations. Once these two coefficients
are calculated, the scattered and the transmitted field are obtained by using the expres-
sions (3.22) and (3.20). Now, it is necessary to rewrite the fitting problem considering
this new pair of unknowns. Let L exp

j be the experimental values obtained by measuring
the level under study, for j = 1, . . . , NL, being NL the number of considered frequencies,
and let L̂(Mj, δj, ωj) be the computed numerical values of the level under consideration,
for j = 1, . . . , NL, where Mj and δj are the novel unknowns, and ωj is the fixed angular
frequency. If the cost function is defined as

ΥL(Mj, δj, ωj) =
|L exp
j − L̂(Mj, δj, ωj)|2

|L exp
j |2

, ∀j = 1, . . . , NL, (3.37)

the fitting problem is stated as follows: Find the values Mj∗ ≥ 0 and δj∗ ≥ 0 such that
minimize the difference between the experimental and the numerical values, i.e.,

(Mj∗, δj∗) = arg min
Mj , δj>0

ΥL(Mj, δj, ωj), ∀j = 1, . . . , NL, (3.38)

where Mj and δj are the novel unknowns given by Mj = e
Im(kVl j

)l
and δj = Re(kVlj)l, and

L is the fitted level (in this chapter L can be the echo reduction level, the insertion loss, or
the fractional power dissipation).

In this new strategy, an algorithm of type trust-region reflective (see [59]) has been used
to solve the minimization problem (3.38). This algorithm is based in the interior-reflective
Newton method (see [60] and [61] for more details), and requires the computation of the
gradient of the functional to be minimized. Then, in the next section, the adjoint method
is explained.

3.4.2 Adjoint problem

Since the optimization problem with the new unknowns is solved by using an algorithm
which requires the computation of the gradient of the objective function, the adjoint method
is used to reduce the computational cost [73, 84, 136].

Let C = (A1, B1, AVl
, BVl

, AVt , BVt , A3, B3) be the solution of the system (3.36) (state
variables), and q = (M, δ) the parameters in the model (control variables). The equation
of state can be written as follows

g(C, q) = A(q)C(q)− b(q) = 0, (3.39)

where A is the matrix of the system (3.36), and b is the right-hand side. If the parameters q
are known, the solution of (3.39) could be computed by using the direct problem explained
in Section 3.3. However, the solution of the inverse problem could be difficult. To approxi-
mate the gradient of the state equation (3.39), it is possible to use methods such as finite
differences over the parameters, increasing the computational cost of the problem. Adjoint
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methods give an efficient way to evaluate the derivative of (3.39), with a cost independent
of the number of parameters, and that usually is no greater than solving the state equation
once.
It is supposed that C is the solution of the system of linear equations AC = b, where A,
C, and b depend on the parameters q. Then, to evaluate the gradient of g,

∇qg = gq + gCCq

=

(
∂g

∂q1

,
∂g

∂q2

, . . . ,
∂g

∂qNq

)
+

(
∂g

∂C1

,
∂g

∂C2

, . . . ,
∂g

∂CNC

)



∂C1

∂q1

∂C1

∂q2
. . . ∂C1

∂qNq
...

...
...

∂CNC
∂q1

∂CNC
∂q2

. . .
∂CNC
∂qNq


 ,

(3.40)

where gq and gC are the gradient of g with respect to the parameters (p1, . . . , pNp) and the
variables (C1, . . . , CNC ), respectively. Once the function g is given, gp and gC are easy to
compute, but the computation of Cp is challenging. Taking into account AC = b,

∂A

∂qi
C + A

∂C

∂qi
=
∂b

∂qi
⇒ ∂C

∂qi
= A−1

(
∂b

∂qi
− ∂A

∂qi
C

)
, ∀i = 1, . . . , Nq. (3.41)

Then, to solve the derivative of C with respect to the parameters q, it is necessary to solve
a system of MC×MC equations for each component of the parameters vector. To overcome
these difficulties the adjoint equation is solved

ATλ = gTC ⇒ gC = λTA. (3.42)

Taking into account (3.41) and (3.42),

gCCq = gC(A−1(bq − AqC)) = (gCA
−1)(bq − AqC) = (λTAA−1)(bq − AqC)

= λT (bq − AqC). (3.43)

By using (3.43), the gradient of g given by (3.40) results

∇qg = gq + gCCq = gq − λT (bq − AqC).

All the details of the computation of the gradient of the cost function with ER, IL, and
FPD are shown in the Appendix 3.B.

3.5 Numerical results

Once the different constitutive laws over the Young modulus have been explained, and
the objective functions have been described, the following section focuses on the numerical
simulations of the inverse problem. First of all, code validation is performed to ensure
the robustness of the methodology. For this purpose, some manufactured data have been
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created. Then, the available experimental data are described, and these data are used to
perform both the parametric and the non-parametric simulations. The numerical results
are shown considering two different acoustic sources: a plane wave with an oblique incidence
angle, and a source with a non-planar directivity pattern.

In all the numerical simulations, to compute the mass density of the water in terms of
the hydrostatic pressure and the temperature, the standard IAPWS95 is used, International
Association for the Properties of Water and Steam, Formulation 1995, (see [101] and [97]
for more details). Also, it is supposed that the sound speed is given by a response function
depending on the hydrostatic pressure and the temperature, following [20]. According
to [23], the attenuation coefficient of the water results

α = 0.11× 10−12 ln 10

(2π)2
= 6.42× 10−16.

Following [95], the length of the parametric array is h = 1.88 m and the constant Q0 = 1.

3.5.1 Code validation

To validate the code, some simulations with manufactured data have been performed.
Since a viscoelastic material is manufactured, it is necessary to consider the values of the
Young modulus and the Poisson’s ratio, which describe the elastic behavior of the material
as well as the thickness and the mass density. In this case, it is considered the mass density
ρV = 2100 kg/m3, the thickness l = 0.05 m, and the Poisson’s ratio ν = 0.48. It is supposed
that the Young modulus is governed by an arbitrary frequency-dependent function (see
Figure 3.5), that is, Ej = E ′j − iE ′′j , ∀j = 1, . . . , NL, where NL is the number of considered
frequencies.

Figure 3.5: Values of the real and the imaginary parts (solid blue and dashed red line,
respectively), which have been chosen as the Young modulus of the manufactured material.
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Plane waves

By using the values of the Young modulus shown in Figure 3.5, and considering a plane
wave as the acoustic source, it is possible to calculate the echo reduction level, the insertion
loss, and the fractional power dissipation of the material by using the definitions appearing
in Section 3.2.3 with S(θ) = δθ0 . The resulting manufactured data are shown in Figure 3.6.
The validation code is done considering the fitting problem with the unknowns δ = Re(kVl

)l

Figure 3.6: Manufactured values of the frequency response of a material with mass density
ρV = 2100 kg/m3, thickness l = 0.05 m, Poisson’s ratio ν = 0.48, and Young modulus shown
in Figure 3.5, for the echo reduction level (top left), insertion loss level (top right), and
fractional power dissipation (bottom).

and M = eIm(kVl
)l (see Section 3.4.1 for more details). The fitting is performed for each

level individually by using a trust-region reflective algorithm. The initial guess for the
solver has been computed, finding the absolute minimum of a function of two variables in
a two-dimensional Cartesian discrete grid for the higher frequency. The considered grid
is (M, δ) ∈ [10−2, 102] × [1, 100], and the cost function is (3.44). With this strategy, the
guess value of the Young modulus is E = 5.14 × 108 − i1.91 × 107 Pa. The results of the
fitting of the echo reduction level, the insertion loss, and the fractional power dissipation
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are shown in Figures 3.7, 3.8, and 3.9, respectively. In the left plots, the manufactured
data, with solid blue line, and the optimized values, with dashed red line of each level are
plotted with respect to the frequency. In the right plots, the real and the imaginary parts
of the Young modulus are plotted. The fitting problem solved to obtain the optimized
values is given by (3.38), and the relative errors are εER = 5.68%, εIL = 4.04× 10−11%, and
εFPD = 2.86× 10−1%. Table 3.1 shows the relative errors in the single fittings. The cells

Figure 3.7: Left: Manufactured (solid blue line) and optimized (dashed red line) values of
the echo reduction level plotted with respect to the frequency. Right: Values of the real
and imaginary parts of the Young modulus (solid line: manufactured data, dashed line:
optimized ones). The fitting problem under consideration is (3.38) where L =ER. The
relative error is εER = 5.68%.

ER fitting IL fitting FPD fitting

εER 5.68% 71.43% 65.75%
εIL 54.45% 4.04× 10−11% 27.41%
εFPD 67.25% 16.20% 2.86× 10−1%

Table 3.1: Relative errors in the single fitting, using the primal unknowns M and δ. The
minimization problem is given by (3.38). The relative errors are computed by using (3.37),
where L is ER, IL, and FPD, respectively.

highlighted in grey are the errors due to the single fitting. The rest of the errors in the same
column are obtained from computing the values of the rest of the levels with the optimal
values of the single fitting. These errors are smaller than 1% for IL and FPD fittings, and
lower than 6% for ER. Moreover, as it can be observed in the right plots of Figures 3.13
and 3.14, the obtained real and imaginary parts of the Young modulus have similar behavior
than the manufactured one given in Figure 3.5. However, for the ER fitting, the behavior is
quite different and non-smooth. For this reason, a joint fitting is performed. The considered
minimization problem is (3.44). The numerical results are shown in Figure 3.15.
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Figure 3.8: Left: Manufactured (solid blue line) and optimized (dashed red line) values
of the insertion loss level plotted with respect to the frequency. Right: Values of the real
and imaginary parts of the Young modulus (solid line: manufactured data, dashed line:
optimized ones). The fitting problem is given by (3.38) where L =IL. The relative error is
εIL = 4.04× 10−11%.

Figure 3.9: Left: Manufactured (solid blue line) and optimized (dashed red line) values of
the fractional power dissipation plotted with respect to the frequency. Right: Values of
the real and imaginary parts of the Young modulus (solid line: manufactured data, dashed
line: optimized ones). The considered fitting problem is (3.38) where L =FPD. The relative
error is εFPD = 2.86× 10−1%.

The comparison between the experimental data and the optimized ones is shown in the
top left, top right, and bottom left plots of Figure 3.10 for the echo reduction level, the
insertion loss, and the fractional power dissipation, respectively. In the bottom right plot,
the real and the imaginary parts of the Young modulus are plotted. The relative errors of
single fittings computed by using (3.37) are εER = 30.76%, εIL = 3.97%, and εFPD = 4.96%.
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Figure 3.10: Manufactured (solid blue line) and optimized (dashed red line) values of the
echo reduction level (top left), insertion loss (top right), and fractional power dissipation
(bottom left) plotted with respect to the frequency for the joint fitting. Bottom right:
Values of the real and imaginary parts of the Young modulus (solid line: manufactured
data, dashed line: optimized ones). The considered fitting problem is (3.44). The relative
errors are εER = 30.76%, εIL = 3.97%, and εFPD = 4.96%.

With the joint fitting, the Young modulus presents a smoother behavior than with the
single fitting, but the error with the ER level is higher.

Acoustic source with a non-planar directivity pattern

By using the values of the Young modulus shown in Figure 3.5, and taking into account
the directivity pattern of the acoustic source described in (3.17), the experimental data
for the echo reduction, insertion loss, and fractional power dissipation can be computed
by using the definitions appearing in Section 3.2.3. The resulting manufactured data are
shown in Figure 3.11. The validation of the code is performed considering the fitting
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Figure 3.11: Manufactured values of the frequency response of a material with mass density
ρV = 2100 kg/m3, thickness l = 0.05 m, Poisson’s ratio ν = 0.48, and Young modulus shown
in Figure 3.5, for the echo reduction level (top left), insertion loss level (top right), and
fractional power dissipation (bottom).

problem with the unknowns δ = Re(kVl
)l and M = eIm(kVl

)l (see Section 3.4.1 for more
details), and with the fitting of each level individually. To solve the fitting problem, a trust-
region reflective algorithm has been used. The initial guess has been computed, finding the
absolute minimum of a function of two variables in a two-dimensional Cartesian discrete
grid for the higher frequency. The considered grid is (M, δ) ∈ [10−2, 102]× [1, 100], and the
cost function is given by (3.44). With this strategy, the guess value of the Young modulus
is E = 5.09× 108− i1.84× 107 Pa. The results of the fitting of the echo reduction level, the
insertion loss, and the fractional power dissipation are shown in Figures 3.12, 3.13, and 3.14,
respectively. In left plots, the experimental data, with solid blue line, and the optimized
values, with dashed red line) of each level are plotted with respect to the frequency. In the
right plots, the real and the imaginary parts of the Young modulus are plotted. The fitting
problem solved to obtain the optimized values is given by (3.38), and the relative errors are
εER = 23.76%, εIL = 4.21× 10−11%, and εFPD = 4.65× 10−10%.



100 Non-parametric viscoelastic characterization

Figure 3.12: Left: Manufactured (solid blue line) and optimized (dashed red line) values
of the echo reduction level plotted with respect to the frequency. Right: Values of the real
and imaginary parts of the Young modulus (solid line: manufactured data, dashed line:
optimized ones). The fitting problem under consideration is (3.38) where L =ER. The
relative error is εER = 23.76%.

Figure 3.13: Left: Manufactured (solid blue line) and optimized (dashed red line) values
of the insertion loss level plotted with respect to the frequency. Right: Values of the real
and imaginary parts of the Young modulus (solid line: manufactured data, dashed line:
optimized ones). The fitting problem is given by (3.38) where L =IL. The relative error is
εIL = 4.21× 10−11%.

In Table 3.2, the relative errors obtained in the single fittings are given. The highlighted
cells are the errors due to the single fitting. The rest of the errors in the same column are
obtained from computing the values of the rest of the levels with the optimal values of the
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Figure 3.14: Left: Manufactured (solid blue line) and optimized (dashed red line) values
of the fractional power dissipation plotted with respect to the frequency. Right: Values of
the real and imaginary parts of the Young modulus (solid line: manufactured data, dashed
line: optimized ones). The considered fitting problem is (3.38) where L =FPD. The relative
error is εFPD = 4.65× 10−10%.

ER fitting IL fitting FPD fitting

εER 23.76% 70.88% 59.93%
εIL 57.80% 4.21× 10−11% 26.49%
εFPD 71.77% 16.16% 4.65× 10−10%

Table 3.2: Relative errors in the single fitting, using the primal unknowns M and δ. The
minimization problem is given by (3.38). The relative errors are computed by using (3.37),
where L is ER, IL, and FPD, respectively.

fitting. These errors are negligible for the IL and the FPD fittings. However, the error for
the ER fitting is larger than 20%. Moreover, as it can be observed in the the right plots
of Figures 3.13 and 3.14, the obtained real and imaginary parts of the Young modulus
have similar behavior than the manufactured ones given in Figure 3.5. However, for the
ER fitting, the behavior is quite different and non-smooth. For this reason, a joint fitting
is performed. The considered minimization problem is (3.44). The numerical results are
shown in Figure 3.15. The comparison between the experimental data and the optimized
ones is shown in the top left, top right, and bottom left plots of Figure 3.15 for the echo
reduction level, the insertion loss, and the fractional power dissipation, respectively. In the
bottom right plot, the real and the imaginary parts of the Young modulus are plotted. The
relative errors of single fittings computed by using (3.37) are εER = 8.87%, εIL = 5.62%,
and εFPD = 2.49%. Although this problem is ill-posed because the experimental data are
real (see Lemma 3.4.3), joint fitting errors smaller than 10% are achieved in all the levels.
Moreover, the obtained Young modulus has similar behavior to the manufactured one, and
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Figure 3.15: Manufactured (solid blue line) and optimized (dashed red line) values of the
echo reduction level (top left), insertion loss (top right), and fractional power dissipation
(bottom left) plotted with respect to the frequency for the joint fitting. Bottom right:
Values of the real and imaginary parts of the Young modulus (solid line: manufactured
data, dashed line: optimized ones). The considered fitting problem is (3.44). The relative
errors are εER = 8.87%, εIL = 5.62%, and εFPD = 2.49%.

it is smooth (see Figure 3.5).

To illustrate the robustness of the proposed methodology with respect to the selected
initial guess (used in the frequency-by-frequency non-linear optimization), a variety of initial
iterants has been considered in a log-scaled 10×10 grid around the exact value. The fitting
curves for the quantities of interest ER, IL, and FPD and also the real and imaginary
parts of the Young modulus are plotted in Figure 3.16. To show a sharp estimation of the
variability of this frequency response function, functional medians of these sets of functions
have been computed. These functional medians correspond to curves that can be obtained
for a particular initial guess. On the contrary, the computation of the pointwise-mean curve
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would lead to a fictitious curve (see [151] for a detailed discussion), which does not represent
any realization of the optimization procedure described in the sections above.

Figure 3.16: Manufactured values (solid blue line) of the echo reduction level (top left),
insertion loss (top right), and fractional power dissipation (bottom) plotted with respect
to the frequency for the joint fitting. Shaded grey lines represent the 95% confidence level
bands computed by using the functional medians of sets of optimized curves, which are
obtained by using different initial guesses in a grid. The dashed red line corresponds with
the depth median. The fitting problem is given by (3.44).

Additionally, the associated functional 95% confidence level bands using the modal
depth have also been computed (see [67] for further details). These functional computations
have been performed using a bootstrap procedure with 500 resamples, and the smoothing
parameter for the bootstrap samples, which is settled as a proportion of the sample variance
matrix, has been fixed to 0.1 (more precisely, the R package fda.usc [77] has been used in
the implementation).

As it can be observed in Figures 3.16 and 3.17, slight changes on the initial guess lead
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Figure 3.17: Manufactured values (solid blue line) of the real (left plot), and imaginary
(right plot) parts of the Young modulus. Shaded grey lines represent the 95% confidence
level bands computed by using the functional medians of sets of optimized curves, which
are obtained by using different initial guesses in a grid. The dashed red line corresponds
with the depth median. The used fitting problem is (3.44).

us to such different results in the fitting. Moreover, it is clear that not all the initial guess
yields to the same optimal value for the Young modulus, which is consistent with the fact
that the functional cost exhibits multiple local minima.

3.5.2 Experimental data

The material under consideration is the AptFlex SF5048 (see [5]). This material is a
polymer and the company Precision Acoustics provides its dimensions, its mass density,
and some frequency response plots of the Echo Reduction level (ER), the Insertion Loss
(IL), and the Fractional Power Dissipation (FPD). In Figure 3.18, the frequency response
of this polymeric plate is shown in a frequency range between 20 and 135 kHz, for ER (top
left), IL (top right), and FPD (bottom).

In order to get the acoustic characterization of AptFlex SF5048 by using a viscoelastic
model, it is necessary to compute the value of the two parameters, which describe the elastic
behavior of the material, that is, the Poisson’s ratio and the Young modulus. The main
goal is to find the values of the elastic parameters which provide a frequency response as
close as possible to the experimental measurements. For this purpose, the inverse problems
described in Section 3.4 are solved. In all the numerical simulations, the Poisson’s ratio is
supposed known (see Remark 3.4.1 for more details), with value ν = 0.48, following the
work [98], which is the generic value for polyurethane elastomers. Besides, following the
technical specifications provided by the supplier of the material Aptflex SF5048 (see [5]),
the polymer mass density is ρV = 2100 kg/m3, and the thickness l = 0.05 m.
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Figure 3.18: Experimental values of the frequency response of the AptFlex SF5048 for
the echo reduction level (top left), the insertion loss (top right), and the fractional power
dissipation (bottom).

3.5.3 Numerical simulation considering a parametric model

In this section, the numerical simulations are performed with the available experimental
data, shown in Figure 3.18, by using the Kelvin-Voigt model and considering a plane wave
with an oblique incidence angle as the acoustic source.

On the first hypothesis, the real and the imaginary parts of Young modulus are consid-
ered constants. More precisely, following [124], it was considered that the Young modulus
of the polymer tile could be written as

E = E ′ − iωE ′′

where E ′ and E ′′ are assumed constant, that is, the used parametric model is the Kelvin-
Voigt model. This fitting is performed by using an exhaustive search algorithm. Since
the range for the real and the imaginary parts of the Young modulus is extensive, an
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optimization strategy based on brute-force has been implemented. Although the algorithm
is computationally more expensive, this strategy allows us to find the absolute minimum
of a function of two variables in successive refined two-dimensional Cartesian discrete grids
(see Section 3.4.1 for more details).

A multigrid of 300×300 points is considered, where E ′ ∈ [104, 1010], and E ′′ ∈ [102, 108].
The values of the cost function at each point of the multigrid have been computed, and the
absolute minimum of these values is chosen as the optimal. This optimal value corresponds
with a value of E ′1 and E ′′1 . For performing a new iteration, it is necessary to give new limits
for the multigrid. The new endpoints of the intervals are chosen fixing the optimal values of
the Young modulus as the center of the interval, that is, a new multigrid of 300×300 points
is considered, where E ′ ∈ [E ′1 × 10−0.5, E ′1 × 100.5] and E ′′ ∈ [E ′′1 × 10−0.5, E ′′1 × 100.5]. Two
iterations have been considered because the two obtained minima in these two iterations
are closer than 10−2.

ER fitting IL fitting FPD fitting

E ′ [Pa] 1.0975× 108 1.2328× 109 7.5646× 107

E ′′ [Pa] 14.1747 5.5908× 103 114.9757

εER 15.44% 89.93% 49.88%
εIL 66.64% 3.14% 238.53%
εFPD 39.41% 49.63% 2.86%

Table 3.3: Real and imaginary parts of the Young modulus, and relative errors in every
single fitting, assuming than the Young modulus is a linear function of the frequency. The
minimization problem under consideration is (3.33), and it has been solved by using an
exhaustive search. The relative errors are computed by using (3.32), where L is ER, IL,
and FPD.

The comparison between the experimental data and the optimized ones is shown in
Figure 3.19 (top left: echo reduction level; top right: insertion loss; bottom: fractional
power dissipation). Although the fitting for IL and FPD shows good agreement, the fit-
ting for ER shows many oscillations in the frequency response of the optimization values.
Table 3.3 shows the real and the imaginary parts of the Young modulus obtained with the
minimization problem (3.33), and the relative error computed by using (3.32). Since the
results are not good enough, especially for the acoustic coefficients that are not fitting, so
a new strategy is considered.

3.5.4 Numerical simulation considering a non-parametric approach

In order to improve the results obtained with the parametric model, a non-parametric
approach is considered in this section. As in the previous section, two different types of
acoustic sources have been used: a plane wave with an oblique angle of incidence, and a
parametric array with a non-planar directivity pattern. Different constitutive laws over the
primal unknowns are used to overcome the difficulties.
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Figure 3.19: Experimental (solid blue line) and optimized (dashed red line) values of the
echo reduction level (top left), the insertion loss (top right), and the fractional power
dissipation (bottom) plotted with respect to the frequency. The considered fitting problem
is (3.33), and an exhaustive search strategy is used. E ′ and E ′′ are considered constants,
and the Young modulus is given by E = E ′ − iωE ′′. The optimal Young modulus and the
relative errors are given in Table 3.3.

Plane waves

To improve the obtained results when both the real and the imaginary parts of the
Young modulus are constants, it is here assumed that the real and the imaginary parts
of the Young modulus are governed by an arbitrary smooth function that depends on the
angular frequency, that is,

E(ω) = E ′(ω)− iE ′′(ω).

As in the previous case, to calculate the solution of the minimization problem (3.35) for
the different acoustic quantities under consideration (ER, IL, and FPD), an optimization
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strategy based on brute-force has been implemented. The parameters for the algorithm are
the same as in the previous case, but in this case, three iterations are necessary to achieve
than the two last obtained minima are closer than 10−2.

Figure 3.20: Left: Experimental (solid blue line) and optimized (dashed red line) values
of the echo reduction level plotted with respect to the frequency. Right: Values of the
real (solid blue line) and imaginary (dashed red line) part of the Young modulus. The
considered fitting problem is (3.35) where L =ER and an exhaustive search strategy is
used. The relative errors are given in the first column in Table 3.4.

Figure 3.21: Left: Experimental (solid blue line) and optimized (dashed red line) values
of the insertion loss level plotted with respect to the frequency. Right: Values of the real
(solid blue line) and imaginary (dashed red line) part of the Young modulus. The considered
fitting problem is given by (3.35) where L =IL and an exhaustive search strategy is used.
The relative errors are given in the second column in Table 3.4.
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Figure 3.22: Left: Experimental (solid blue line) and optimized (dashed red line) values
of the fractional power dissipation plotted with respect to the frequency. Right: Values
of the real (solid blue line) and imaginary (dashed red line) part of the Young modulus.
The fitting problem under consideration is (3.35) where L =FPD and an exhaustive search
strategy is used. The relative errors are given in the third column in Table 3.4.

ER fitting IL fitting FPD fitting

εER 0.24% 66.31% 39.24%
εIL 89.84% 1.8166× 10−2% 47.48%
εFPD 64.80% 19.75% 0.17%

Table 3.4: Relative errors in the single fitting, assuming than the Young modulus is gov-
erned by an arbitrary frequency-dependent function. The considered minimization problem
is (3.35), and an exhaustive search strategy is used. The relative errors are computed by
using (3.34), where L is ER, IL, and FPD, respectively.

The comparison between the experimental data and the optimized ones is shown in the
left plot of Figures 3.20, 3.21, and 3.22 for the echo reduction level, the insertion loss, and the
fractional power dissipation, respectively, showing a good agreement with the experimental
data. In the right plot, the real and the imaginary parts of the Young modulus are plotted,
showing an oscillatory behavior. As it is shown in Table 3.4, the relative errors computed by
using (3.34) for the single fittings (highlighted in grey) are smaller than when a parametric
model is used, but this fitting leads to results where both the real and the imaginary parts of
the Young modulus present spurious oscillations. Notice that the behavior of the complex-
valued Young modulus is qualitatively different from the smooth behavior shown in [98] for
other polymeric materials.

To improve the results and get a smoother frequency response of the acoustic levels
under study, instead of using the unknowns E ′ and E ′′ in the fitting procedure a novel pair
of unknowns, depending on the wave number of the longitudinal waves in the viscoelastic
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medium, kVl
, and the thickness of the absorbing tile, l, have been chosen. It has been

considered δ = Re(kVl
)l and M = eIm(kVl

)l. As it has been explained in Section 3.4.1, an
algorithm of type trust-region reflective (see [59]) has been used to solve the minimization
problem. This algorithm requires the computation of the gradient of the functional to be
minimized. In order to achieve better results, the fitting problem has been solved from upper
to lower frequencies. To choose the initial guess, a multigrid exhaustive search algorithm
has been used. One iteration in a multigrid with 500 × 500 points has been considered
where E ′ ∈ [E ′1 × 10−0.5, E ′1 × 100.5] and E ′′ ∈ [E ′′1 × 10−0.5, E ′′1 × 100.5]. Moreover, at each
frequency, the previous optimal value is chosen as guess for the next frequency. Figure 3.23

Figure 3.23: Values of the relative error for ER (top left plot), IL (top right plot), and FPD
(bottom plot) for different values of E ′ and E ′′ at f = 135 kHz. The white square is the
minimum value of the cost function.

shows the values of the cost function for different values of E ′ and E ′′ for ER (top left
plot), IL (top right plot), and FPD (bottom plot), and what is the position where the local
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minimum is located, marked with a white square. This minimum is chosen as the initial
guess for the algorithm explained above. As it can be observed, the levels under study
present several local minima, which makes the problem more difficult to solve. Although
the relative errors in these fitting are small, the difficulties appear because the frequency
response can show oscillations or can be smooth but presents jumps at some frequencies.

Figure 3.24: Left: Experimental (solid blue line) and optimized (dashed red line) values of
the echo reduction level plotted with respect to the frequency. Right: Values of the real
(solid blue line) and imaginary (dashed red line) part of the Young modulus. The considered
fitting problem is (3.38) where L =ER. The relative error is εER = 4.0717× 10−10%.

Figure 3.25: Left: Experimental (solid blue line) and optimized (dashed red line) values of
the insertion loss level plotted with respect to the frequency. Right: Values of the real (solid
blue line) and imaginary (dashed red line) part of the Young modulus. The fitting problem
under consideration is (3.38) where L =IL. The relative error is εIL = 2.6181× 10−12%.
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Figure 3.26: Left: Experimental (solid blue line) and optimized (dashed red line) values
of the fractional power dissipation plotted with respect to the frequency. Right: Values of
the real (solid blue line) and imaginary (dashed red line) part of the Young modulus. The
fitting problem is given by (3.38) where L =FPD. The relative error is εFPD = 0.15%.

ER fitting IL fitting FPD fitting

εER 4.0717× 10−10% 92.19% 99.82%
εIL 99.59% 2.6181× 10−12% 100.17%
εFPD 96.62% 56.71% 0.15%

Table 3.5: Relative errors in the single fitting, using the novel primal unknowns M and
δ. The minimization problem is given by (3.38). The relative errors are computed by
using (3.37), where L is ER, IL, and FPD, respectively.

The comparison between the experimental data and the optimized ones is shown in the
left plots of Figures 3.24, 3.25, and 3.26 for the echo reduction level, the insertion loss, and
the fractional power dissipation, respectively. In the right plot the real and the imaginary
parts of the Young modulus are plotted. The relative errors of each single fitting computed
by using (3.37) are εER = 4.0717× 10−10%, εIL = 2.6181× 10−12%, and εFPD = 0.15%. In
Table 3.5 are given all the relative errors. The highlighted cells are the errors due to single
fittings. The rest of the errors in the same column are obtained from computing the values
of the rest of the levels with the optimal values obtained from each single fitting. Although
these relative errors are slightly larger than those obtained with previous strategies, as
it can be observed in the right plots of Figures 3.24, 3.25, and 3.26, the real and the
imaginary parts of the Young modulus have a smoother frequency response than those
obtained when the unknowns in the minimization problem are E ′ and E ′′. In fact, these
frequency responses qualitatively reproduce the mechanical behavior of polymeric materials
described in the work [98], in which it can be seen that both the real part and the imaginary
part of Young module decrease rapidly as the frequency decreases.
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However, the values of the E ′ and E ′′ obtained for each level are different. They do not
have the same behavior, and even do not have the same magnitude order. To overcome
this problem, a joint fitting is performed, where the fitting problem consists in finding the
values Mj∗ ≥ 0 and δj∗ ≥ 0, such that minimize the difference between the experimental
and the numerical values, i.e., ∀j = 1, . . . , N

(Mj∗, δj∗) = arg min
Mj , δj>0

[ΥER(Mj, δj, ωj) + ΥIL(Mj, δj, ωj) + ΥFPD(Mj, δj, ωj)] , (3.44)

where ΥL is given by (3.37), Mj and δj are the novel unknowns given by Mj = e
Im(kVl j

)l

and δj = Re(kVlj)l, ERexp, ILexp, and FPDexp are the experimental echo reduction level,
insertion loss, and fractional power dissipation, respectively. Once again, to choose the
initial guess, a multigrid exhaustive search algorithm has been used. One iteration in a
multigrid with 500 × 500 points has been considered where E ′ ∈ [E ′1 × 10−0.5, E ′1 × 100.5]
and E ′′ ∈ [E ′′1 × 10−0.5, E ′′1 × 100.5]. Figure 3.27 shows the values of the cost function for

Figure 3.27: Values of the relative error for the joint fitting (left) and for the joint without
considering ER (right), for different values of E ′ and E ′′ at f = 135 kHz. The white square
is the minimum value of the cost function.

different values of E ′ and E ′′ for the joint fitting (left plot), and for the joint fitting without
ER (right plot), and what is the position where the local minimum is located, marked with
a white square. This minimum is chosen as the initial guess for the algorithm explained
above. Although in the joint fitting, the cost function presents a global minimum well
identified, in the joint fitting without ER the zone where the minimum can be located is
bigger. The comparison between the experimental data and the optimized ones is shown in
the top left, top right, and bottom left plots of Figure 3.28 for the echo reduction level, the
insertion loss, and the fractional power dissipation, respectively. In the bottom right plot,
the real and the imaginary parts of the Young modulus are plotted. The relative errors
of single fittings computed by using (3.37) are εER = 29.44%, εIL = 3.6536 × 10−2%, and
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Figure 3.28: Experimental (solid blue line) and optimized (dashed red line) values of the
echo reduction level (top left plot), insertion loss (top right plot), and fractional power
dissipation (bottom left plot) plotted with respect to the frequency for the joint fitting.
Bottom right: Values of the real (solid blue line) and imaginary (dashed red line) part of the
Young modulus. The used fitting problem is (3.44). The relative errors are εER = 29.44%,
εIL = 3.6536× 10−2%, and εFPD = 0.39%.

εFPD = 0.39%. With this fitting, common values for the Young modulus are obtained, but
the relative errors have grown. Since the relative error for the echo reduction level is several
orders larger than the error in the other two levels, a joint fitting without considering the
echo reduction level is performed. Then, the fitting problem consists in finding the values
Mj∗ ≥ 0 and δj∗ ≥ 0, such that minimize the difference between the experimental and the
numerical values, i.e., ∀j = 1, . . . , N

(Mj∗, δj∗) = arg min
Mj , δj>0

[ΥIL(Mj, δj, ωj) + ΥFPD(Mj, δj, ωj)] . (3.45)

The comparison between the experimental data and the optimized ones is shown in the
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Figure 3.29: Experimental (solid blue line) and optimized (dashed red line) values of the
echo reduction level (top left), insertion loss (top right), and fractional power dissipation
(bottom left) plotted with respect to the frequency for the joint fitting without considering
the ER level in the fitting. Bottom right: Values of the real (solid blue line) and imaginary
(dashed red line) part of the Young modulus. The fitting problem is given by (3.45). The
relative errors are εER = 41.64%, εIL = 2.3538× 10−10%, and εFPD = 2.76%.

top left, top right, and bottom left plots of Figure 3.29 for the echo reduction level, the
insertion loss, and the fractional power dissipation, respectively. In the bottom right plot,
the real and the imaginary parts of the Young modulus are plotted. The frequency response
of E ′ and E ′′ in Figure 3.29 qualitatively reproduce the mechanical behavior of polymeric
materials described in the work [98], in which it can be seen that both the real part and
the imaginary part of Young module decrease as the frequency decreases. The relative
errors of single fittings computed by using (3.37) are εER = 41.64%, εIL = 2.3538× 10−10%,
and εFPD = 2.76%. As it can be observed, the relative error for IL has decreased, but for
FPD and ER have grown (in fact, the error for ER is double than with the joint fitting).



116 Non-parametric viscoelastic characterization

Comparing the values of the relative error for the joint fitting and the joint fitting without
ER (see Figure 3.27), this situation is what expected because when the ER is omitted in
the fitting, the minimum is less seated.

Acoustic source with a non-planar directivity pattern

In this section, it is considered that the acoustic source is a parametric array with a non-
planar directivity pattern. The considered plane wave spectrum is described in Section 3.3.1.
As it has been explained in Section 3.4, to improve the results of the previous sections, and
get a smoother frequency response of the acoustic levels under study, instead of using
the unknowns E ′ and E ′′ in the fitting procedure, δ = Re(kVl

)l and M = eIm(kVl
)l have

been considered (see Section 3.4.1 for more details). An algorithm of type trust-region
reflective (see [59]) has been used to solve the minimization problem, so the computation
of the gradient of the functional is necessary. First of all, each level is fitting separately,
considering the minimization problem given by (3.38). As in previous simulations, the
fitting problem has been solved from upper to lower frequencies. The numerical results for

ER fitting IL fitting FPD fitting

εER 3.002× 10−5% 51.10% 30.77%
εIL 81.29% 2.156× 10−6% 32.61%
εFPD 78.29% 8.60% 0.188%

Table 3.6: Relative errors in the single fitting, using the novel primal unknowns M and δ.
The minimization problem under consideration is (3.38). The relative errors are computed
by using (3.37), where L is ER, IL, and FPD, respectively.

the echo reduction level, the insertion loss, and the fractional power dissipation are shown
in Figures 3.30, 3.31, and 3.32. In the left plots, the experimental data in solid blue line and
the optimized ones in dashed red line are plotted with respect to the frequency, and in the
right plots, the real and the imaginary parts of the Young modulus (in solid blue line and
in dashed red line, respectively) are shown. The relative errors of single fittings computed
by using (3.37) are εER = 3.002× 10−5%, εIL = 2.156× 10−6%, and εFPD = 0.188%, and in
Table 3.5, the relative errors committed for each fitting are shown.

Table 3.6 shows the relative errors. Those cells highlighted in grey represent the errors
obtained with every single fitting. By using the obtained optimal values of the parameters,
it is possible to compute the rest of the levels, and therefore to calculate the relative errors.
As it can be observed, the relative errors due to the single fittings are smaller than 1% but
are larger than those computed with plane waves. Moreover, the frequency response of the
real and the imaginary parts of the Young modulus are smooth and qualitatively similar
to those computed when the acoustic source is an oblique plane wave (see right plots of
Figures 3.30, 3.31, and 3.32). However, the values of E ′ and E ′′ present different orders for
each level. To overcome this difficulty, the joint fitting, given by (3.44), is performed. The
comparison between the experimental data and the optimized ones is shown in the top left,
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Figure 3.30: Left: Experimental (solid blue line) and optimized (dashed red line) values of
the echo reduction level plotted with respect to the frequency. Right: Values of the real
(solid blue line) and imaginary part (dashed red line) of the Young modulus. The fitting
problem is given by (3.38) where L =ER. The relative error is εER = 3.002× 10−5%.

Figure 3.31: Left: Experimental (solid blue line) and optimized (dashed red line) values of
the insertion loss level plotted with respect to the frequency. Right: Values of the real (solid
blue line) and imaginary part (dashed red line) of the Young modulus. The fitting problem
under consideration is (3.38) where L =IL. The relative error is εIL = 2.156× 10−6%.

top right, and bottom left plots of Figure 3.33 for the echo reduction level, the insertion
loss, and the fractional power dissipation, respectively. In the bottom right plot, the real
and the imaginary parts of the Young modulus are plotted. The relative errors of single
fittings computed by using (3.38) are εER = 27.09%, εIL = 3.94×10−2%, and εFPD = 0.34%.
The behavior is the same observed when the acoustic source is a plane wave: the relative
errors are grown with respect to those obtained with single fittings, and the error for ER is
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Figure 3.32: Left: Experimental (solid blue line) and optimized (dashed red line) values
of the fractional power dissipation plotted with respect to the frequency. Right: Values of
the real (solid blue line) and imaginary part (dashed red line) of the Young modulus. The
considered fitting problem is (3.38) where L =FPD. The relative error is εFPD = 0.188%.

several orders higher than for the other two levels. Then, a joint fitting without considering
the echo reduction level is performed by using the fitting problem (3.45). The comparison
between the experimental data and the optimized ones is shown in the top left, top right,
and bottom left plots of Figure 3.34 for the echo reduction level, the insertion loss, and
the fractional power dissipation, respectively. In the bottom right plot, the real and the
imaginary parts of the Young modulus are plotted. The relative errors of single fittings
computed by using (3.45) are εER = 38.33%, εIL = 1.75 × 10−6%, and εFPD = 3.35%.
Once again, the behavior is the same as when a plane wave is considered as the acoustic
source: the relative error for IL decreases, but for the other two levels grows. Since in all
simulations, errors in the echo reduction fitting are larger than in the other two levels, and
the obtained Young modulus for this level presents significant differences with respect to
the obtained with the other levels, some doubts about the reliability of the echo reduction
data appear. Moreover, the frequency response of E ′ and E ′′ in Figure 3.34 decreases as
the frequency decreases, as expected.

3.6 Conclusions

In this chapter, a viscoelastic material has been numerically characterized by using the
frequency response of the echo reduction level, the insertion loss, and the fractional power
dissipation. The main purpose of this chapter is to use a non-parametric methodology to
characterize the viscoelastic model. Then, a data-driven approach has been considered to
determine the frequency-dependent parameters of the material under consideration. By
using this approach, the choice of a parametric model for fitting is avoided, and the fitting
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Figure 3.33: Experimental (solid blue line) and optimized (dashed red line) values of the
echo reduction level (top left), insertion loss (top right), and fractional power dissipation
(bottom left) plotted with respect to the frequency for the joint fitting. Bottom right:
Values of the real (solid blue line) and imaginary part (dashed red line) of the Young
modulus. The fitting problem is given by (3.44). The relative errors are εER = 27.09%,
εIL = 3.94× 10−2%, and εFPD = 0.34%.

is performed, minimizing the distance between the experimental data and the computed
values.

Taking into account the setup, which is used to measure the experimental data, a mul-
tilayer medium formed by the viscoelastic material, surrounded by a fluid, is studied. For
this purpose, at the beginning of this chapter, the mathematical models of the compressible
fluid, and the viscoelastic solid are studied. Then, the coupled problem and the acoustic
quantities of interest for this problem have been described.

The direct problem of wave propagation in the multilayer medium has been studied.
Since the available experimental data are measured in a setup where the acoustic source
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Figure 3.34: Experimental (solid blue line) and optimized (dashed red line) values of the
echo reduction level (top left), insertion loss (top right) and fractional power dissipation
(bottom left) plotted with respect to the frequency for the joint fitting without considering
the ER level in the fitting. Bottom right: Values of the real (solid blue line) and imaginary
part (dashed red line) of the Young modulus. The used fitting problem is (3.45). The
relative errors are εER = 38.33%, εIL = 1.75× 10−6%, and εFPD = 3.35%.

is a parametric array with a non-planar directivity pattern, the incident, scattered, and
transmitted fields have been described by using an integral representation. These integrals
involve a plane wave spectrum and the reflection and transmission coefficients in a plane
wave framework. Then, the computation of these two coefficients considering a propagation
problem of plane waves is shown.

Since to characterize the material, some inverse problems are solved, the choice of the
primal unknowns for the fitting problem is highly relevant. In this chapter, a variety of
constitutive laws over the unknowns has been considered, such as considering that the
Young modulus is a linear function of the frequency, or that is governed by an arbitrary
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frequency-dependent function. With these assumptions, when the fitting results present
good agreement with the experimental data, the unknowns present an oscillatory behavior.
Then, a new pair of unknowns, depending on the wave number and the thickness of the ma-
terial, has been considered. To solve this fitting problem, a trust-region reflective algorithm
has been used. This algorithm requires the computation of the gradient of the functional
cost. To achieve a lower computational cost, the adjoint method is used to calculate the
derivatives of the functional cost.

Finally, numerical simulations have been performed. The code has been validated by
using manufactured data. Then, a real-world viscoelastic material has been characterized,
considering a parametric model and a non-parametric approach. The results with both
methodologies have been compared, showing that the non-parametric approach allows us
to improve the frequency response of the unknowns, achieving relative errors similar to the
parametric methodology. Concluding, the viscoelastic material has been characterizing,
with errors less than 10%, and with a smooth frequency response of the real and imaginary
parts of the Young modulus similar to those appearing in the literature.

It is important to recall that the fitting may be improved considering the non-planar sur-
face of the material (see Chapter 4). But, despite the problem is ill-posed (see Lemma 3.4.3),
the proposed methodology has contributed to characterized the absorbing tile “Apltile
SF5048” (see[5]) as a viscoelastic material.





Appendix

3.A Integral approximation

The computation of the levels ER, IL, and FPD with the expressions (3.5), (3.6),
and (3.7), presents some difficulties due to the integral representations (3.18), (3.20),
and (3.22). In this section, a brief explanation about how the integral is approximated
is given. The difficulties appearing in the approximation are shown, and the used solutions
to overcome them are given.

First of all, the change of variable u = 1 − cos θ is considered. Then, the incident
pressure field, defined by (3.18), results

Πinc(pm) = ikF

∫ 1−i∞

0

S̃(u)eikFp3m(1−u) du, (3.A.1)

where kF is the wave number of the fluid, p3m is the measurement point in the p3−axis,
located in front of the sample, and S̃ is the plane wave spectrum in terms of u, given by

S̃(u) = Q0
eikFhu − 1

ikFu
. (3.A.2)

Now, it is possible to split the integral (3.A.1) in two parts to compute the integral over
the real and the imaginary path, that is,

Πinc(pm) = ikF

∫ 1

0

S̃(u)eikFp3m(1−u) du

︸ ︷︷ ︸
I1

+ ikF

∫ 1−i∞

1

S̃(u)eikFp3m(1−u) du

︸ ︷︷ ︸
I2

= I1 + I2.

The difficulties appearing in the computation of I2 are related to the endpoint of the
complex path. As it is shown in right plot in Figure 3.35, there is an exponential decay on
the complex path. As the contribution from the complex path decreases rapidly due to the
exponential that appears in the integrand, it is possible to calculate the imaginary part of
the contour only over the interval (1, 1 +Aj) where A is chosen according to each problem
details.

On the other hand, the difficulties appearing in the computation of I1 are related to
the highly oscillatory behavior of this integral over [0, 1]. As it is shown in left plot in

123
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Figure 3.35: Real and imaginary parts of the integrand of Πinc over the real path (left plot)
and over the complex path (right plot) at f = 135 kHz.

Figure 3.35, both the real and the imaginary parts of the integrand of I1 are highly os-
cillatory. Then, to get the desired accuracy by using a classical quadrature rule, a huge
amount of quadrature nodes is necessary, increasing the computational cost of the Gaussian
quadrature.

Remark 3.A.1. In the simulations shown in this chapter, A =
log(10−16)

−p3mRe(kF)
to guarantee

that the complex path of the integral is truncated at that point u such that |eikFp3mu| < 10−16.
To approximate the integrals, a Simpson method is used, and the number of quadrature
points is N = 100000 for the real path and N = 1000 for the imaginary path.

The same arguments can be followed to compute the scattered and the transmitted
fields. If the change of variable u = 1 − cos θ is considered, the scattered pressure field,
defined by (3.22), results

Πscat(pm) = ikF

∫ 1−i∞

0

S̃(u)R(pm)eikFp3m(1−u) du

= ikF

∫ 1

0

S̃(u)R(pm)eikFp3m(1−u) du

︸ ︷︷ ︸
I3

+ ikF

∫ 1−i∞

1

S̃(u)R(pm)eikFp3m(1−u) du

︸ ︷︷ ︸
I4

,

and the transmitted pressure field, defined by (3.20), results

Πtransm(pm) = ikF

∫ 1−i∞

0

S̃(u)T(pm)eikFp3m(1−u) du

= ikF

∫ 1

0

S̃(u)T(pm)eikFp3m(1−u) du

︸ ︷︷ ︸
I5

+ ikF

∫ 1−i∞

1

S̃(u)T(pm)eikFp3m(1−u) du

︸ ︷︷ ︸
I6

,
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where R and T are the reflection and the transmission coefficient of the inserted panel. As
it happens with the incident pressure field, the complex path is truncated, and I4 and I6

are computed over the interval (1, 1 + Aj) (see the right plots in Figures 3.36 and 3.37).
The left plots of Figures 3.36 and 3.37 show that the integrand of I3 and I5 are highly
oscillatory. Then, to get the desired accuracy it is necessary to use a classical quadrature
rule with a large number of quadrature nodes.

Figure 3.36: Real and imaginary parts of the integrand of Πscat over the real (left plot) and
the complex path (right plot) at f = 135 kHz.

Figure 3.37: Real and imaginary parts of the integrand of Πtransm over the real (left plot)
and the complex path (right plot) at f = 135 kHz.
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3.B Derivatives

In Section 3.4.1, an optimization problem has been described, in term of two new un-
knowns M and δ. This problem has been solved by using a trust-region reflective algorithm.
This method is based in the interior-reflective Newton method, and requires the compu-
tation of the gradient of the cost function. Although each one of these derivatives can be
calculated separately, the adjoint method described in Section 3.4.2 is used to compute the
gradient efficiently.

Now, the derivatives of L with respect to the two parameters M and δ are described to
be used in the computation of the gradient of the objective function (3.38), where L could
be ER, IL, or FPD. The system (3.36) can be written as AC = b. If the parameters are
qi with i = 1, 2, where q1 = M and q2 = δ, the derivative of the system solution C with
respect to qi could be computed by using

∂A

∂qi
C + A

∂C

∂qi
=
∂b

∂qi
, i = 1, 2.

Once the partial derivatives ∂C
∂qi

are computed, it is possible to calculate the gradient of the

cost function. Following (3.38), the cost function can be defined as

ΥL(Mj, δj, ωj) =
|L exp
j − L̂(Mj, δj, ωj)|2

|L exp
j |2

, ∀j = 1, . . . , NL,

and the partial derivative with respect to the parameter qi is given by

∂ΥL

∂qi
(Mj, δj, ωj) =

2 sign
(

L exp
j − L̂(Mj, δj, ωj)

)
|L exp
j − L̂(Mj, δj, ωj)|

|L exp
j |2

× ∂L̂

∂qi
(Mj, δj, ωj), ∀j = 1, . . . , NL,

where the computation of
∂L̂

∂qi
is detailed below to consider the differences when the level L

is ER, IL, or FPD. For the sake of simplicity, the dependency of Mj, δj, and ωj in Πscat and
Πtransm is omitted below. Taking into account the definition of the echo reduction level (3.5)
and the insertion loss (3.6), the gradients of ER and IL are given as

∇δ,M ÊR =
−10

|Π̂scat|2 log 10
∇δ,M |Π̂scat|2,

∇δ,M ÎL =
−10

|Π̂transm|2 log 10
∇δ,M |Π̂transm|2,
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being ∇δ,M the gradient respect to δ and M , and

∇δ,M |Π̂scat|2 = 2




Re(Π̂scat)Re

(
∂Π̂scat

∂M

)
+ Im(Π̂scat)Im

(
∂Π̂scat

∂M

)

Re(Π̂scat)Re

(
∂Π̂scat

∂δ

)
+ Im(Π̂scat)Im

(
∂Π̂scat

∂δ

)



, (3.B.1)

∇δ,M |Π̂transm|2 = 2




Re(Π̂transm)Re

(
∂Π̂transm

∂M

)
+ Im(Π̂transm)Im

(
∂Π̂transm

∂M

)

Re(Π̂transm)Re

(
∂Π̂transm

∂δ

)
+ Im(Π̂transm)Im

(
∂Π̂transm

∂δ

)



, (3.B.2)

where, following (3.20) and (3.22),

∂

∂M
Π̂scat = ikF

∂

∂M

∫ 1−i∞

0

S̃(u)R(pm)eikFp3m(1−u) du

= ikF

∫ 1−i∞

0

S̃(u)
∂C1

∂M
(pm)eikFp3m(1−u) du,

∂

∂δ
Π̂scat = ikF

∂

∂δ

∫ 1−i∞

0

S̃(u)R(pm)eikFp3m(1−u) du

= ikF

∫ 1−i∞

0

S̃(u)
∂C1

∂δ
(pm)eikFp3m(1−u) du,

∂

∂M
Π̂transm = ikF

∂

∂M

∫ 1−i∞

0

S̃(u)T(pm)eikFp3m(1−u) du

= ikF

∫ 1−i∞

0

S̃(u)
∂C8

∂M
(pm)eikFp3m(1−u) du,

∂

∂δ
Π̂transm = ikF

∂

∂δ

∫ 1−i∞

0

S̃(u)T(pm)eikFp3m(1−u) du

= ikF

∫ 1−i∞

0

S̃(u)
∂C8

∂δ
(pm)eikFp3m(1−u) du,

where S̃(u) is the plane wave spectrum of the truncated parametric source, given by (3.A.2),
R(pm) and T(pm) are the plane wave reflection and transmission coefficients, respectively,
given by (3.3) and (3.4), and C1 and C8 are the amplitudes of scattered and transmitted
waves, respectively, obtained from the resolution of the system (3.36), in terms of δ and M .

On the other hand, taking into account the definition of the fractional power dissipa-
tion (3.7), the gradient of FPD is given as
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∇δ,M F̂PD(Mj, δj, ωj) =
−2

|Π̂inc|2
[
∇δ,M |Π̂transm|2 +∇δ,M |Π̂scat|2

]
,

being ∇δ,M the gradient respect to δ and M , and ∇δ,M |Π̂scat|2 and ∇δ,M |Π̂transm|2 are given
by (3.B.1) and (3.B.2).
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4.1 Introduction

In Chapter 3, a viscoelastic material has been characterized considering two different
acoustic sources: a plane wave and an acoustic source with a non-planar directivity pattern.
In that chapter, it has been considered that the material has a planar surface. The main
goal of this chapter is the acoustic characterization of this viscoelastic material with a non-
planar surface. Since there exist many difficulties, some simplifications are considered to
deal with them, such as to consider that the acoustic source is a plane wave or to consider
that the viscoelastic material can only be deformed on tension/compression mechanical
stresses (neglecting possible shear effects).

The problem of acoustic wave scattering by a periodic coupling surface between two
different media, under plane wave excitation, is deeply studied in a wide range of fields
in science and engineering [9, 118, 134, 146, 174, 176]. Many of the used approaches
are based on the use of integral equation methods due to the need of discretizing only
the boundary of the domain. The slow convergence of the classical expansions for quasi-
periodic Green functions is well-known (in fact, do not converge at Wood anomalies [39]).
There is a variety of efficient integral equation methods that allow computing solutions
accurately with reduced computing times [52, 116, 117]. Particularly in [42, 43], highly
accurate solutions of some challenging transverse electric and transverse magnetic scattering
problems are obtained with short computational times. The Windowing Green Function
method for scattering problems by a periodic perfect conductor is introduced in [39]. The
problem is given in the context of electromagnetic wave propagation problems, and plane
wave illumination is considered. The methodology is based on the use of quasi-periodic
Green functions, in conjunction with a smooth-windowing technique, and presents fast
convergence even at and around Wood anomaly configurations where the classical quasi-
periodic Green function ceases to exist. The same shifted Green function can be used to
solve a problem of scattering by a periodic array of cylinders with fast convergence even at
and around Wood anomalies (see [40] for more details). In [41], the windowing technique,
in conjunction with free-space Green functions, is applied to transmission problems with
superalgebraically convergence.

In this chapter, a fast convergent integral equation method, that solves the problem
of acoustic wave scattering by two media in contact in a periodic setting, is introduced.
The proposed integral method uses a shifted quasi-periodic Green function and a smooth-
windowing technique to achieve the fast convergence. In Section 4.2, the problem of wave
scattering by a periodic sound-soft surface is solved, describing the shifted quasi-periodic
Green functions and the windowing technique used to achieve the superalgebraically con-
vergence. In this section, a single-layer representation is used. In Section 4.3, the same
scattering problem by a periodic sound-soft surface is studied, but in this case, using a
double-layer representation. Section 4.4 is devoted to studying the wave scattering prob-
lem by a periodic coupling interface between two media, including the integral equation
formulation. Section 4.5 shows the discretization of each problem under study, the quadra-
ture rules used to approximate the integrals, and the description of the efficiency test used
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to illustrate the convergence order. In Section 4.6, numerical results are presented to illus-
trate the fast convergence of the proposed method. Finally, in Section 4.7, some conclusions
about the methodology are discussed. This chapter has three appendices. Appendix 4.A
presents some relevant results about the Bessel functions, which are used widely through-
out the sections of this chapter. Appendix 4.B describes the decomposition of the kernels
involved in the integral formulation of single-layer, double-layer, adjoint double-layer, and
hypersingular representations are detailed. These decompositions are useful to deal with
the kernels appearing in the integral formulation. In Appendix 4.C, some relevant questions
about Perfectly Matched Layers (PML) are described because the results obtained with the
proposed method are compared with the solution computed by using the Finite Element
Method (FEM) and the PML technique.

The work presented in this chapter has been carried out during a visit of fourteen weeks
at the California Institute of Technology, under the supervision of the professor Oscar P.
Bruno.

4.2 Sound-soft periodic surface with a single-layer rep-

resentation

In this section, the acoustic wave scattering problem (see Figure 4.1) by a sound-soft
periodic surface is considered. It is supposed that a plane wave with a concrete incident
angle is impinging on the periodic surface. An integral formulation is used to solve the
scattering problem, and a single-layer representation is considered. The classical quasi-
periodic Green function is introduced in order to show the problems appearing at Wood
anomaly frequencies. Moreover, a shifted quasi-periodic Green function is fully described,
and used to achieve a fast convergence order.

4.2.1 Statement of the problem

The problem of scattering of a plane wave (see Figure 4.1) by a sound-soft periodic
surface is considered

Γ = {(x, f(x)), x ∈ R} with f ∈ Cr
per

([
−L

2
,
L

2

])
, r ≥ 2,

where Cr
per

([
−L

2
, L

2

])
is the set of L-periodic, and r-times continuously differentiable func-

tions in the real line. The propagation domain is Ω = {(x, y) ∈ R2 : y > f(x)}, the incident
plane wave is

U inc(x, y) = eik(x sin θ−y cos θ) = ei(αx−βy), (4.1)

where θ ∈ [−π/2, π/2] is the incidence angle measured from the vertical, and k is the
wave number in the propagation domain Ω. Given the incident field U inc (solution of the
Helmholtz equation), the problem under consideration is to find a solution U = U inc +U s of
the Helmholtz equation in Ω such that the scattered field U s satisfies a Rayleigh expansion
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y

x

θ

Ω

L
2

−L
2

ν Γy = f(x)

Figure 4.1: Scheme of the problem. The propagation domain Ω is highlighted in grey. Γ is
the periodic surface, with period L, and θ is the incidence angle.

radiation condition [146] at infinity, and the quasi-periodicity condition. Moreover, the
total field U satisfies the boundary condition U = 0 on Γ. That is, the aim is to compute
the scattered field U s ∈ C2(Ω) ∩ C(Ω̄) solution of the Helmholtz equation

∆U s + k2U s = 0 in Ω,

which satisfies

U s = −U inc on Γ,

U s(x+ L, y) = U s(x, y)eiαL with (x, y) ∈ Γ.

U s is required to satisfy a Rayleigh expansion radiation condition [146], that is, the scattered
field can be expanded as an infinite sum of plane waves

U s(x, y) =
∑

n∈N

ane
i(αnx+βny), with (x, y) ∈ [−L/2, L/2]× (H,∞), (4.2)

where the Rayleigh coefficients an ∈ C and H = max
x∈[−L2 ,

L
2 ]
f(x). Here

αn = α + n
2π

L
, (4.3)

and

βn =

{ √
k2 − α2

n if α2
n ≤ k2,

i
√
α2
n − k2 otherwise.

(4.4)

If the subset of integer numbers Λ = {n ∈ Z : α2
n < k2} is defined, then for n ∈ Λ, eiαnx+iβny

is a propagative plane wave. If α2
n > k2, eiαnx+iβny are evanescent, that is, they decrease

exponentially as y → ∞. If α2
n = k2, βn = 0 so eiαnx+iβny = eiαnx is a grazing plane wave,

i.e., a plane wave that propagates parallel to the grating, and in that case, k is a value
of the so-called Wood anomaly frequency (see [155, 179]). For a fixed L and θ, the set of
Wood frequencies can be defined as

K = {k ∈ R : k = ±αn, n ∈ Z}.
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Remark 4.2.1. In what follows, for the sake of simplicity on the exposition of the integral
kernels, for x, x′ ∈ Ω and y, y′ ∈ Ω, it will be defined X = x− x′ and Y = y − y′.

4.2.2 Classical quasi-periodic Green function

Let (X, Y ) ∈ R2, k /∈ K, that is, k is not a Wood anomaly. Let G be the two-dimensional
free space Green function

G(X, Y ) =
i

4
H

(1)
0 (k
√
X2 + Y 2), (4.5)

where H
(1)
0 is the first kind Hankel function of order 0 (see (4.A.4) in Appendix 4.A). The

quasi-periodic Green function Gq can be constructed as an infinite sum of free-space Green
functions (with periodically distributed monopole singularities) (see [44] for further details),
that is,

Gq(X, Y ) =
∑

n∈Z

e−iαnLG(X + nL, Y ).

It may be easily verified that Gq possesses the quasi-periodic property, that is,

Gq(X + nL, Y ) = eiαnLGq(X, Y ), (X, Y ) ∈ R2.

It can be defined B = {(x, y) ∈ R2 : (x, y) 6= (mL, 0),m ∈ Z}. The series Gq(X, Y )
converges for (X, Y ) ∈ B (see [44]), and the regular part of the series can be defined as

Rq(X, Y ) =
∑

n∈Z, |n|≥2

e−iαnLG(X + nL, Y ),

which converges uniformly for (X, Y, k) in any compact subset of B × K̄. Moreover, the
Green function also admits the Rayleigh expansion (see theorem 4.4 in [44]), that is, can
be expressed in spectral form as

Gq(X, Y ) =
∑

n∈Z

eiαnX+iβn|Y |

βn
.

This expression is only valid provided βn 6= 0 for all n ∈ Z.

4.2.3 Slow-rise windowing Green function

Following [128], a smooth windowing function S (see Figure 4.2) is introduced. This
function is non-zero in an interval of length 2A and has a slow rise (is equal to zero for
|x| > A, is equal to 1 for |x| < cA, and decreases from 1 to 0 in a slow and smooth manner:
its derivatives tend to zero as A→∞ throughout the region of decrease cA ≤ |x| ≤ A with
0 < c < 1). This windowing function is given by

S(x, cA,A) =





1 if |x| ≤ cA,

e
2e−1/u

u−1 if cA ≤ |x| < A, u =
|x| − cA
A− cA ,

0 if |x| ≥ A.

(4.6)
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By using the smooth windowing function (4.6), for wave numbers k that are not Wood

Figure 4.2: Windowing function S(x, cA,A) for cA = 1 and A = 2.

anomaly values, k /∈ K, if A > L then an approximate periodic Green function is defined
as follows:

Gq
A(X, Y ) =

∑

n∈Z

e−iαnLG(X + nL, Y )S(X + nL, cA,A),

where 0 < c < 1. Similarly, it is possible to define an approximation of its normal derivative.
If ν is the unit normal to the interface Γ, defined by

νx =
(−f ′(x), 1)√

1 + f ′(x)2
, (4.7)

the approximation of the normal derivative of Gq is defined as

Hq
A(X, Y ) =

∑

n∈Z

e−iαnL
∂G

∂νx′
(X + nL, Y )S(X + nL, cA,A).

Theorem 4.2.2. If k is not a Wood anomaly, f is a smooth function and µ is an α
quasi-periodic smooth function, the integral

∫ L/2

−L/2
Gq
A(x− x′, y − f(x′))µ(x′)

√
1 + f ′(x′)2dx′

converges superalgebraically fast as the truncation radius A tends to infinity, that is, it
converges faster than any power of the ratio 1

A
, to

∫ L/2

−L/2
Gq(x− x′, y − f(x′))µ(x′)

√
1 + f ′(x′)2dx′,
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uniformly for (x, y) ∈ [−L/2, L/2] × R (see [128] for the complete proof). A similar nu-
merical behavior is observed for the integral

∫ L/2

−L/2
Hq
A(x− x′, y − f(x′))µ(x′)

√
1 + f ′(x′)2dx′,

which converges superalgebraically fast as A tends to infinity to

∫ L/2

−L/2

∂Gq

∂νx′
(x− x′, y − f(x′))µ(x′)

√
1 + f ′(x′)2dx′,

uniformly for (x, y) ∈ [−L/2, L/2]× R, where νx′ is given by (4.7).

4.2.4 Shifted quasi-periodic Green function

To overcome the convergence problem at and around Wood anomaly frequencies, and
to solve the scattering problem at all frequencies, the shifted quasi-periodic Green function
introduced in [39] is used. The fast decay of this function is proof in [39] for a two-
dimensional context, and in [47], and [48] for a three-dimensional case. The fast convergence
of the function is achieved adding a number J of Green function poles outside the physical
propagation domain. In this chapter, these poles are located outside of Ω vertically below
the original Green function pole at distances h, 2h, . . . , Jh, that is, the set of shifted poles
is given by

PJ = {(X, Y ) ∈ R2 : (X, Y ) = (0,−lh) for some l ∈ Z, with 1 ≤ l ≤ J}.

To define this shifted quasi-periodic Green function, it is necessary to define the rapidly
decaying half-space Green functions GJ . If k ∈ K̄, for a given shift distance h > 0, and
J ∈ N, the J-th rapidly-decaying half-space Green function is defined by

GJ(X, Y ) =
i

4

J∑

l=0

(−1)l
(
J

l

)
H

(1)
0 (k

√
X2 + (Y + lh)2), (4.8)

for (X, Y ) ∈ R2, (X, Y ) 6= (0,−lh), l = 0, . . . , J . This function GJ is a J-dependent
half-space Green function which decays rapidly as X tends to infinity, and is constructed
as linear combination of J free-space Green functions (4.5) with shifted arguments. For
example, if J = 1,

G1(X, Y ) = H
(1)
0 (k
√
X2 + Y 2)−H(1)

0 (k
√
X2 + (Y + h)2).

Then, similarly to the classical case, the new quasi-periodic Green function Gq
J can be

constructed as an infinite sum of half-space Green functions (with periodically distributed
monopole singularities), that is,

Gq
J(X, Y ) =

∑

n∈Z

e−iαnLGJ(X + nL, Y ). (4.9)
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Gq
J possesses the quasi-periodic property, that is,

Gq
J(X + nL, Y ) = eiαnLGq

J(X, Y ).

Let B = {(x, y) ∈ R2 : (x, y) 6= (mL, 0),m ∈ Z}. By using (4.8), the quasi-periodic Green
function (4.9) is given by

Gq
J(X, Y ) =

i

4

∑

n∈Z

e−iαnL
J∑

l=0

(−1)l
(
J

l

)
H

(1)
0 (k

√
(X + nL)2 + (Y + lh)2),

which converges for (X, Y ) ∈ B (see [44] for more details). Further, the regular part of the
series can be defined as

Rq
J(X, Y ) =

∑

n∈Z, |n|≥2

e−iαnLGJ(X + nL, Y ),

which converges uniformly for (X, Y, k) over compact subsets of B × K̄. Moreover, for
Y ≥ 0, the Green function Gq

J admits a Rayleigh expansion (see [39]), that is, can be
expressed in spectral form as

Gq
J(X, Y ) =

∑

n∈Z

i

2Lβn

(
J∑

l=0

(−1)l
(
J

l

)
eiβnlh

)
eiαnX+iβn|Y |. (4.10)

This expression is only valid provided βn 6= 0 for all n ∈ Z.

Theorem 4.2.3. Let J ∈ N be given. If A > L, and k is not a Wood anomaly, by using the
smooth windowing function (4.6), an approximate periodic Green function can be defined
by

Gq
JA(X, Y ) =

∑

n∈Z

e−iαnLGJ(X + nL, Y )S(X + nL, cA,A),

which converges to the quasi-periodic Green function Gq
J faster than any power of the ratio

1
A

(see [47]), uniformly for (X, Y ) ∈ [−L/2, L/2]×R. Moreover, if ν is the unit normal to
the interface, the approximation of the normal derivative of GJ can be defined as

Hq
JA(X, Y ) =

∑

n∈Z

e−iαnL
∂GJ

∂νx′
(X + nL, Y )S(X + nL, cA,A),

which converges uniformly for (X, Y ) ∈ [−L/2, L/2] × R, to the normal derivative of the

quasi-periodic Green function
∂Gq

J

∂νx′
superalgebraically fast as the truncation radius A tends

to infinity.
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Convergence at and around Wood anomalies Gq
J converges far away from Wood

anomalies. In many cases, the integral operators involved in the integral formulation of the
problems are not invertible at Wood anomalies (the integral operators are not invertible for
any values of the shift h) or for some values of the shift h (they are not invertible at any
value of k). In these cases, a finite number of Rayleigh modes in the spectral expansion of
Gq
J (4.10) presents difficulties because their denominators tend to zero as a Wood anomaly

is approached. If these terms are excluded of the infinite sum (4.10), then Gq
J converges

for each (X, Y ) ∈ B. To overcome these difficulties at and around Wood anomalies, in [39]
a modification of Gq

J is described, when a double-layer formulation is used. [40] shows
another modification of Gq

J , but in this case, a linear combination of a single- and double-
layer formulation is used. In [48], a modified shifted quasi-periodic Green function for a
three-dimensional case is shown considering a linear combination of a single- and double-
layer formulation. In this chapter, the convergence order is studied in the frequencies far
away from Wood anomalies. The study of the proposed methodology at and around Wood
anomalies will be considered for a further research.

4.2.5 Integral formulation

Once the shifted quasi-periodic Green function has been defined, the acoustic wave
propagation by a periodic sound-soft boundary is studied over one period. Let Ω# and Γ#

be the intersection of Ω and Γ, respectively with the set (−L/2, L/2)×R (see Figure 4.3),
that is

Ω# =

{
(x, y) ∈

(
−L

2
,
L

2

)
× R : y > f(x)

}
,

Γ# =

{
(x, f(x)), x ∈

(
−L

2
,
L

2

)}
.

The Dirichlet scattering problem described in Section 4.2.1 can be reduced to second kind
integral equations on the curve Γ# (see [106, 146] for a detailed study), and it can be written
by using a variety of integral formulations. In this case, the scattered field is given in the
form of a single-layer potential as

U s(x, y) =

∫ L/2

−L/2
−Gq

J(x− x′, y − f(x′))ϕq(x′)
√

1 + f ′(x′)2dx′, (x, y) ∈ Ω#, (4.11)

with ϕq a quasi-periodic and continuous density, solution of the integral equation

∫ L/2

−L/2
Gq
J(x− x′, f(x)− f(x′))ϕq(x′)

√
1 + f ′(x′)2dx′ = U inc(x, f(x)), (x, f(x)) ∈ Γ#,

(4.12)
where U inc is the incident plane wave given in (4.1). In order to solve (4.12), it is necessary
to compute the integral in the left-hand side. A modification of the Nyström approach
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L
2

x

y
θ

−L
2

ν

y = f(x)

Ω#

Γ#

Figure 4.3: Scheme of the periodic problem. The intersection between the propagation
domain Ω, and the set [−L/2, L/2]×R is denoted by Ω#, and is highlighted in grey. Γ# is
the intersection between the interface Γ, and [−L/2, L/2]×R (highlighted in blue), where
L is the period, and θ is the angle of incidence of the impinging plane wave.

is used [138] to approximate this integral in order to achieve a high-order evaluation of
logarithmic integral operators. This method is based on the use of periodic unknowns [39].
Then, considering the change of unknown

ϕper(x) = ϕq(x)e−iαx, (4.13)

where, since ϕq is a quasi-periodic function,

ϕper(x+ L) = ϕq(x+ L)e−iα(x+L) = eiαLϕq(x)e−iαxe−iαL = ϕq(x)e−iαx,

it results that ϕper is a periodic function. Then, Equation (4.12) results

∫ L/2

−L/2
Gq
J(x− x′, f(x)− f(x′))ϕper(x′)γ(x, x′)

√
1 + f ′(x′)2dx′ = U inc(x, f(x))e−iαx, (4.14)

where γ(x, x′) = e−iα(x−x′).

Lemma 4.2.4. Let µ be a continuous and periodic density, and f a periodic function, with
period L. Taking into account the definition of the shifted quasi-periodic function (4.9),

I(x) =

∫ L/2

−L/2
Gq
J(x− x′, f(x)− f(x′))γ(x, x′)µ(x′)

√
1 + f ′(x′)2dx′

=

∫ L/2

−L/2

∑

n∈Z

e−iαnLGJ(x− x′ + nL, f(x)− f(x′))γ(x, x′)µ(x′)
√

1 + f ′(x′)2dx′

=
∑

n∈Z

e−iαnL
∫ L/2

−L/2
GJ(x− x′ + nL, f(x)− f(x′))γ(x, x′)µ(x′)

√
1 + f ′(x′)2dx′.
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Considering the change of variable z′ = x′ − nL,

I(x) =
∑

n∈Z

e−iαnL
∫ L/2+nL

−L/2−nL
GJ(x− z′, f(x)− f(z′ + nL))γ(x, z′ + nL)µ(z′ + nL)

×
√

1 + f ′(z′ + nL)2dz′ =
∑

n∈Z

∫ L/2+nL

−L/2−nL
GJ(x− z′, f(x)− f(z′))γ(x, z′)µ(z′)

×
√

1 + f ′(z′)2dz′ =

∫ ∞

−∞
GJ(x− z′, f(x)− f(z′))γ(x, z′)µ(x′)

√
1 + f ′(z′)2dz′.

By using Lemma 4.2.4, the left-hand side of (4.14) can be written as (see [39, 128] for
more details)

∫ L/2

−L/2
Gq
J(x− x′, f(x)− f(x′))ϕper(x′)γ(x, x′)

√
1 + f ′(x′)2dx′

=

∫ ∞

−∞
GJ(x− x′, f(x)− f(x′))ϕper(x′)γ(x, x′)

√
1 + f ′(x′)2dx′.

This integral can be truncated by using the window function described in Section 4.2.3, and
using Theorem 4.2.3, it is possible to obtain superalgebraically convergence, and it results

∫ L/2

−L/2
Gq
J(x− x′, f(x)− f(x′))ϕper(x′)γ(x, x′)

√
1 + f ′(x′)2dx′

≈
∫ ∞

−∞
S(x− x′, cA,A)GJ(x− x′, f(x)− f(x′))γ(x, x′)

√
1 + f ′(x′)2

︸ ︷︷ ︸
Mw(x, x′; J)

ϕper(x′)dx′

=

∫ ∞

−∞
Mw(x, x′; J)ϕper(x′)dx′ =

∫ x+A

x−A
Mw(x, x′; J)ϕper(x′)dx′. (4.15)

Then, Equation (4.14) can be approximated considering (4.15). To achieve a high order
accuracy is fundamental to deal with the logarithmic singularity appearing in Mw at x = x′.
Then, the decomposition of the kernel Mw is studied as follows (the reader is referred to
Section 4.B.1 in Appendix 4.B to have a complete and detailed decomposition of a single-
layer potential in a periodic setting). To deduce the decomposition of Mw in (4.15), the same
steps than in the decomposition of the kernel M (see (4.B.1) in Appendix 4.B) is followed,
splitting the kernel in a smooth kernel and a logarithmic part. The difficulties appear
whenever x − x′ is a multiple of 2π because Mw presents singularities (see Section 4.2.4
for more details). Since the integral (4.15) is solved for −A < x − x′ < A, the condition
|x− x′| < 2π is not always satisfied, and hence, an additional cut-off function Pl (see [39])
that vanishes outside a sufficiently small local neighborhood of the singular point x = x′ is
used. This function is introduced in Mwl (see (4.18)), and it can be defined as:

Pl(x− x′, dl, Al) = S(x− x′, dlAl, Al), with 0 < Al < L/2, 0 < dl < 1. (4.16)
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This local window function is nonzero in an interval of length 2Al, and its derivatives tend
to zero as Al →∞ throughout the region of decrease dlA ≤ x−x′ ≤ Al. Then, it is possible
to decompose the kernel Mw in (4.15) as the sum of a smooth kernel Mwr and a logarithm
part as follows

Mw(x, x′; J) = S(x− x′, cA,A)GJ(x− x′, f(x)− f(x′))γ(x, x′)
√

1 + f ′(x′)2

= Mwl(x, x
′; J) ln

(
4 sin2

(π
L

(x− x′)
))

+Mwr(x, x
′; J). (4.17)

Remark 4.2.5. The subscript wr denotes the regular part, and wl is used to denote the
singular part.

Problem without shifts As in the decomposition of M (see Section (4.B.1) in Ap-
pendix 4.B), first of all the problem without shifts is considered, that is, J = 0. In a similar
way to the kernel decomposition of (4.B.1), considering (4.17) the logarithmic part and the
smooth kernel result,

Mwl(x, x
′; 0) = − 1

4π
Pl(x− x′, dl, Al)J0

(
k
√

(x− x′)2 + (f(x)− f(x′))2
)√

1 + f ′(x′)2,

(4.18)

Mwr(x, x
′; 0) = Mw(x, x′; 0)−Mwl(x, x

′; 0) ln
(

4 sin2
(π
L

(x− x′)
))

, (4.19)

where

Mw(x, x′; 0) = S(x− x′, cA,A)GJ(x− x′, f(x)− f(x′))γ(x, x′)
√

1 + f ′(x′)2

=
i

4
S(x− x′, cA,A)H

(1)
0

(
k
√

(x− x′)2 + (f(x)− f(x′))2
)
γ(x, x′)

√
1 + f ′(x′)2.

(4.20)

When x′ → x, γ(x, x) = 1, and the local window (4.16) results Pl(x, x) = 1. Then,
considering (4.18), and (4.A.9), the values of the function Mwl at x = x′ result

Mwl(x, x; 0) = − 1

4π

√
1 + f ′(x)2,

and considering (4.18), (4.19), and (4.20), and proceeding in a similar way to (4.B.4), the
values of Mwr at x = x′ can be computed as

Mwr(x, x; 0) = lim
x′→x

Mwr(x, x
′; 0) = lim

x′→x

[
Mw(x, x′; 0)−Mwl(x, x

′; 0) ln
(

4 sin2
(π
L

(x− x′)
))]

=

[
i

4
− C

2π
− 1

2π
ln

(
kL

4π

√
1 + f ′(x)2

)]√
1 + f ′(x)2,

where C is the Euler’s constant given by (4.A.3).
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Problem with shifts Now the problem with shifts is considered, that is, J > 0. Simi-
larly to the problem without shifts, Mwl(x, x

′; J) and Mwr(x, x
′; J) are defined as in (4.18)

and (4.19), but in this case, Mw is given by

Mw(x, x′; J) = S(x− x′, cA,A)GJ(x− x′, f(x)− f(x′))γ(x, x′)
√

1 + f ′(x′)2

=
i

4
S(x− x′, cA,A)

J∑

l=0

(−1)l
(
J

l

)
H

(1)
0

(
k
√

(x− x′)2 + (f(x)− f(x′) + lh)2
)

× γ(x, x′)
√

1 + f ′(x′)2. (4.21)

Considering (4.18), (4.19), and (4.21), and working similarly to (4.B.5), the values of the
function Mwr(x, x; J) at x = x′ can be computed as

Mwr(x, x; J) = lim
x′→x

Mwr(x, x
′; J) = lim

x′→x

[
Mw(x, x′; J)−Mwl(x, x

′; J) ln
(

4 sin2
(π
L

(x− x′)
))]

=

[
i

4
− C

2π
− 1

2π
ln

(
kL

4π

√
1 + f ′(x)2

)
+
i

4

J∑

l=1

(−1)l
(
J

l

)
H

(1)
0 (klh)

]
√

1 + f ′(x)2,

where C is the Euler’s constant given by (4.A.3).

4.3 Sound-soft periodic surface with a double-layer

representation

In this section, the same problem of scattering of a plane wave by a sound-soft periodic
surface studied in Section 4.2.1 is considered (see Figure 4.1). In this case, instead of using
a single-layer formulation, a double-layer representation is considered.

4.3.1 Integral formulation

As in Section 4.2.5, the acoustic wave propagation problem by a periodic sound-soft
boundary is studied over one period. Let Ω# and Γ# be the intersection of Ω, and Γ,
respectively, with the set x ∈ (−L/2, L/2)×R (see Figure 4.3). In this section, the Dirichlet
scattering problem described in Section 4.2.1 is solved by using an integral formulation
considering that the scattered field is given in the form of a double-layer potential [107].
Then, the scattered field may be written as

U s(x, y) =

∫ L/2

−L/2

∂Gq
J

∂νx′
(x− x′, f(x)− f(x′))ϕq(x′)

√
1 + f ′(x′)2dx′, (x, y) ∈ Ω#, (4.22)
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with ϕq a quasi-periodic and continuous density, solution of the integral equation

ϕq(x) + 2

∫ L/2

−L/2

∂Gq
J

∂νx′
(x− x′, f(x)− f(x′))ϕq(x′)

√
1 + f ′(x′)2dx′ = −2U inc(x, f(x)),

(x, f(x)) ∈ Γ#, (4.23)

being ν the unit normal vector to the interface Γ# defined by (4.7). To solve (4.23), it is
necessary to compute the integral in the left-hand side. As in Section 4.2.5, to approximate
this integral, a modification of the Nyström approach, based on use of periodic unknowns,
is used (see [39] for further information). Then, using the change of unknown defined
in (4.13), Equation (4.23) results

ϕper(x) + 2

∫ L/2

−L/2

∂Gq
J

∂νx′
(x− x′, f(x)− f(x′))ϕper(x′)γ(x, x′)

√
1 + f ′(x′)2dx′

= −2U inc(x, f(x))e−iαx, (4.24)

where γ(x, x′) = e−iα(x−x′). By using Lemma 4.2.4, the integral in the left-hand side of (4.24)
can be written as

∫ L/2

−L/2

∂Gq
J

∂νx′
(x− x′, f(x)− f(x′))ϕper(x′)γ(x, x′)

√
1 + f ′(x′)2dx′

=

∫ ∞

−∞

∂GJ

∂νx′
(x− x′, f(x)− f(x′))ϕper(x′)γ(x, x′)

√
1 + f ′(x′)2dx′.

This integral can be truncated by using the window function described in Section 4.2.3.
Taking into account Theorem 4.2.3, superalgebraically convergence is obtained. Then, the
previous integral results

∫

Γ#

∂Gq
J

∂νx′
(x− x′, f(x)− f(x′))ϕper(x′)γ(x, x′)ds(x′)

≈
∫ ∞

−∞
S(x− x′, cA,A)

∂GJ

∂νx′
(x− x′, f(x)− f(x′))γ(x, x′)

√
1 + f ′(x′)2

︸ ︷︷ ︸
Lw(x, x′; J)

ϕper(x′)dx′

=

∫ ∞

−∞
Lw(x, x′; J)ϕper(x′)dx′ =

∫ x+A

x−A
Lw(x, x′; J)ϕper(x′)dx′. (4.25)

Equation (4.24) can be approximated by using (4.25). In order to achieve a high-order
accuracy, it is necessary to deal with the logarithmic singularity that appears in Lw at
x = x′. For this purpose, the decomposition of Lw is studied as follows. To get a complete
comprehension of the decomposition, the reader is referred to Section 4.B.2 in Appendix 4.B
where a complete and detailed decomposition of a double-layer potential in a periodic setting
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is shown. Following the same steps applied for L (see (4.B.6) in Appendix 4.B), the kernel
Lw can be split in a smooth kernel, and a logarithmic part. Moreover, wherever x− x′ is a
multiple of 2π, Lw presents singularities (see Section 4.2.4 for more details) and, since the
integration interval is −A < x− x′ < A, the condition |x− x′| < 2π is not always satisfied.
As in the single-layer formulation, the additional cut-off function Pl defined in (4.16) is
introduced in Lwl (see (4.27)). Consequently, the integrand in (4.25) may be rewritten as
the sum of a smooth kernel, and a logarithm part (recall that the function Pl vanishes
outside a sufficiently small local neighborhood of the singular point x = x′). Then, Lw is
given by

Lw(x, x′; J) = S(x− x′, cA,A)
∂GJ

∂νx′
(x− x′, f(x)− f(x′))γ(x, x′)

√
1 + f ′(x′)2

=
i

4
S(x− x′, cA,A)

J∑

l=0

(−1)l
(
J

l

)
∂H

(1)
0

∂νx′

(
k
√

(x− x′)2 + (f(x)− f(x′) + lh)2
)

× γ(x, x′)
√

1 + f ′(x′)2

=
ik

4
S(x− x′, cA,A)

J∑

l=0

[
(−1)l

(
J

l

)
H

(1)
1

(
k
√

(x− x′)2 + (f(x)− f(x′) + lh)2
)

×−f
′(x′)(x− x′) + f(x)− f(x′) + lh√
(x− x′)2 + (f(x)− f(x′) + lh)2

]
γ(x, x′). (4.26)

Problem without shifts As in the decomposition of the kernel L, first of all the problem
without shifts is considered, that is, J = 0. Considering (4.26), and in a similar manner
to the decomposition of (4.B.6), the logarithmic part, and the smooth kernel Lwr (see
Remark 4.2.5 for subscript notation) are given by

Lwl(x, x
′; 0) = − k

4π
Pl(x− x′, dl, Al)J1

(
k
√

(x− x′)2 + (f(x)− f(x′))2
)

× −f
′(x′)(x− x′) + f(x)− f(x′)√
(x− x′)2 + (f(x)− f(x′))2

, (4.27)

Lwr(x, x
′; 0) = Lw(x, x′; 0)− Lwl(x, x

′) ln
(

4 sin2
(π
L

(x− x′)
))

, (4.28)

where

Lw(x, x′; 0) = S(x− x′, cA,A)
∂GJ

∂νx′
(x− x′, f(x)− f(x′))γ(x, x′)

√
1 + f ′(x′)2

=
i

4
S(x− x′, cA,A)

∂H
(1)
0

∂νx′

(
k
√

(x− x′)2 + (f(x)− f(x′))2
)
γ(x, x′)

√
1 + f ′(x′)2.

(4.29)

When x = x′, γ(x, x) = 1, and Pl(x, x) = 1. Then, taking into account the definition of
Lwl (4.27), the asymptotic behavior of the Bessel function J1(t) when t → 0 (see (4.A.10)
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in Appendix 4.A), and proceeding in a similar way to (4.B.9), the values of the kernel Lwl

at x = x′ can be computed as

Lwl(x, x; 0) = lim
x′→x

Lwl(x, x
′; 0) = lim

x′→x
− k

2

8π
Pl(x−x′, dl, Al)(−f ′(x′)(x−x′)+f(x)−f(x′)) = 0,

and considering (4.27), (4.28), and (4.29), and proceeding in a similar manner to (4.B.12),
the values of Lwr at x = x′ can be calculated by

Lwr(x, x; 0) = lim
x′→x

Lwr(x, x
′; 0) = lim

x′→x

[
Lw(x, x′; 0)− Lwl(x, x

′; 0) ln
(

4 sin2
(π
L

(x− x′)
))]

= lim
x′→x

[
ik

4
S(x− x′, cA,A)H

(1)
1

(
k
√

(x− x′)2 + (f(x)− f(x′))2
)
γ(x, x′)

× −f
′(x′)(x− x′) + f(x)− f(x′)√
(x− x′)2 + (f(x)− f(x′))2

+
k

4π
Pl(x− x′, dl, Al)

× ln
(

4 sin2
(π
L

(x− x′)
))

J1

(
k
√

(x− x′)2 + (f(x)− f(x′))2
)

× −f
′(x′)(x− x′) + f(x)− f(x′)√
(x− x′)2 + (f(x)− f(x′))2

]
=

f ′′(x)

4π(1 + f ′(x)2)
.

Problem with shifts Now, the problem with shifts is considered, that is, J > 0. Simi-
larly to the problem without shifts, Lwl and Lwr are defined as in (4.27) and (4.28), but in
this case, Lw is given by (4.26). Taking into account (4.26), (4.27), and (4.28), the value of
the function Lwr(x, x) when x coincides with x′ is given by

Lwr(x, x; J) = lim
x′→x

Lwr(x, x
′; J) = lim

x′→x

[
Lw(x, x′; J)− Lwl(x, x

′; J) ln
(

4 sin2
(π
L

(x− x′)
))]

= lim
x′→x

[
ik

4

J∑

l=0

[
(−1)l

(
J

l

)
H

(1)
1

(
k
√

(x− x′)2 + (f(x)− f(x′) + lh)2
)

×−f
′(x′)(x− x′) + f(x)− f(x′) + lh√
(x− x′)2 + (f(x)− f(x′) + lh)2

]
γ(x, x′)S(x− x′, cA,A)

+
k

4π
ln
(

4 sin2
(π
L

(x− x′)
))

J1

(
k
√

(x− x′)2 + (f(x)− f(x′))2
)

×Pl(x− x′, dl, Al)
−f ′(x′)(x− x′) + f(x)− f(x′)√

(x− x′)2 + (f(x)− f(x′))2

]
.



146 Simulation of layered non-planar geometries

The singularities in the Hankel function H
(1)
1 appear when l = 0 so, the sum is split into

two parts: l = 0 and l > 0. The values of Lwr at x = x′ are given by

Lwr(x, x; J) = lim
x′→x

Lwr(x, x
′; J) = lim

x′→x

k

4
(iS(x− x′, cA,A)γ(x, x′)

×H(1)
1

(
k
√

(x− x′)2 + (f(x)− f(x′))2
) −f ′(x′)(x− x′) + f(x)− f(x′)√

(x− x′)2 + (f(x)− f(x′))2

+
1

π

−f ′(x′)(x− x′) + f(x)− f(x′)√
(x− x′)2 + (f(x)− f(x′))2

J1

(
k
√

(x− x′)2 + (f(x)− f(x′))2
)

× Pl(x− x′, dl, Al) ln
(

4 sin2
(π
L

(x− x′)
))

+ iS(x− x′, cA,A)γ(x, x′)

×
J∑

l=1

[
(−1)l

(
J

l

)
H

(1)
1

(
k
√

(x− x′)2 + (f(x)− f(x′) + lh)2
)

×−f
′(x′)(x− x′) + f(x)− f(x′) + lh√
(x− x′)2 + (f(x)− f(x′) + lh)2

])
=

f ′′(x)

4π(1 + f ′(x)2)

+
ik

4

J∑

l=1

(−1)l
(
J

l

)
H

(1)
1 (klh).

4.4 Transmission problem

In this section, the wave propagation between two periodic media in contact is consid-
ered. The scattering problem by a periodic coupling interface is described (see Figure 4.4).
As in previous sections, it is supposed that a plane wave with a given incident angle is
impinging on the periodic interface. An integral formulation is used to solve the scattering
problem considering a linear combination of a single- and a double-layer representations.

4.4.1 Statement of the problem

The transmission problem (see Figure 4.4) of a plane wave by a periodic surface is
considered.

Γ = {(x, f(x)), x ∈ R} with f ∈ Cr
per

([
−L

2
,
L

2

])
, r ≥ 2.

The propagation domains of the scattered and the transmitted field are, respectively,

Ω+ = {(x, y) ∈ R2 : y > f(x)},
Ω− = {(x, y) ∈ R2 : y < f(x)}.

The incident plane wave is

U inc(x, y) = eik
+(x sin θ+−y cos θ+) = ei(αx−βy), (4.30)
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y

Γ

x
L
2

−L
2

Ω+

Ω−

ν
y = f(x)

θ+

Figure 4.4: Scheme of the transmission problem between two media. The propagation
domain of the scattered field Ω+ is highlighted in grey, and the propagation domain of the
transmitted field Ω− is highlighted in cyan. Γ is the periodic surface with period L, and θ+

is the incidence angle in Ω+.

where θ+ ∈ (−π/2, π/2) is the incidence angle in Ω+ measured from the vertical and k+ is
the wave number in the propagation domain Ω+. Given the incident field U inc (solution of
the Helmholtz equation), the problem under consideration is to find U+ = U s + U inc and
U− solutions to the Helmholtz equation in Ω+ and Ω−, respectively, that is,

∆U+ + (k+)2U+ = 0 in Ω+,

∆U− + (k−)2U− = 0 in Ω−,

where k− is the wave number in the propagation domain Ω−. The aim is to compute the
scattered field U s ∈ C2(Ω+) ∩ C1(Ω+) solution of the Helmholtz equation

∆U s + (k+)2U s = 0 in Ω+, (4.31)

and the transmitted field U− ∈ C2(Ω−) ∩ C1(Ω−) solution of the Helmholtz equation

∆U− + (k−)2U− = 0 in Ω−, (4.32)

such that

U s − U− =− U inc on Γ, (4.33)

∂U s

∂ν
− ∂U−

∂ν
=−∂U

inc

∂ν
on Γ, (4.34)

U s(x+ L, y) =U s(x, y)eiαL with (x, y) ∈ Γ, (4.35)

U−(x+ L, y) =U−(x, y)eiαL with (x, y) ∈ Γ, (4.36)

where ν is the unit normal vector to the interface Γ defined by

νx =
(−f ′(x), 1)√

1 + f ′(x)2
. (4.37)
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U s is required to satisfy a Rayleigh expansion radiation condition [146], that is, the scattered
field can be expanded as an infinite sum of plane waves

U s(x, y) =
∑

n∈Z

a+
n e

i(α+
n x+β+

n y), with (x, y) ∈ [−L/2, L/2]× (H,∞), (4.38)

where the Rayleigh coefficients a+
n ∈ C, and H = max

x∈[−L2 ,
L
2 ]
f(x). Here

α+
n = α + n

2π

L

and

β+
n =

{ √
(k+)2 − (α+

n )2 if |α+
n | ≤ k+,

i
√

(α+
n )2 − (k+)2 if |α+

n | > k+.
(4.39)

Let Λ+ = {n ∈ Z : (α+
n )2 < (k+)2}. For n ∈ Λ+, eiα

+
n x+iβ+

n y is a propagative plane wave.

If (α+
n )2 > (k+)2, eiα

+
n x+iβ+

n y are evanescent waves, that is, they decrease exponentially as

y → ∞. If (α+
n )2 = (k+)2, β+

n = 0 so eiα
+
n x+iβ+

n y = eiα
+
n x is a grazing plane wave, i.e., a

plane wave that propagates parallel to the grating, and k+ is a Wood anomaly frequency
(see [155, 179]).
Similarly, U− is required to satisfy a Rayleigh expansion radiation condition [146], that is,
the transmitted field can be expanded as an infinite sum of plane waves

U−(x, y) =
∑

n∈Z

a−n e
i(α−n x−β−n y), with (x, y) ∈ [−L/2, L/2]× (−∞, h), (4.40)

where the Rayleigh coefficients a−n ∈ C, and h = min
x∈[−L2 ,

L
2 ]
f(x). Here

α−n = γ + n
2π

L
,

where γ = k− sin θ− = k+ sin θ+ = α to preserve the continuity on the interface, being θ−

the incident angle in Ω−, that is, α+
n = α−n , and

β−n =

{ √
(k−)2 − (α−n )2 if |α−n | ≤ k−,

i
√

(α−n )2 − (k−)2 if |α−n | > k−.
(4.41)

Let Λ− = {n ∈ Z : (α−n )2 < (k−)2}. For n ∈ Λ−, eiα
−
n x−iβ−n y is a propagative plane wave.

If (α−n )2 > (k−)2, eiα
−
n x−iβ−n y are evanescent waves, that is, they decrease exponentially as

y → −∞. If (α−n )2 = (k−)2, β−n = 0 so eiα
−
n x+iβ−n y = eiα

−
n x is a grazing plane wave, i.e., a

plane wave that propagates parallel to the grating, and k− is a Wood anomaly frequency
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4.4.2 Shifted quasi-periodic Green function

The definition of the shifted quasi-periodic Green functions in Ω+ and Ω− is given as
in Section 4.2.4: they can be constructed as an infinite sum of half-space Green func-
tions (with periodically distributed monopole singularities), and the fast convergence of the
method is achieved adding a number J of Green function poles outside the propagation do-
main. The shifted poles for the Green function Gq

J+ are located in Ω− vertically below the
original Green function pole at distances h+, 2h+, . . . , Jh+, and those for the Green func-
tion Gq

J− are located in Ω+ vertically above the original Green function pole at distances
h−, 2h−, . . . , Jh−, that is, the sets of shifted poles are given by

P+
J = {(X, Y ) ∈ R2 : (X, Y ) = (0,−lh+) for some l ∈ Z, with 1 ≤ l ≤ J},

P−J = {(X, Y ) ∈ R2 : (X, Y ) = (0, lh−) for some l ∈ Z, with 1 ≤ l ≤ J}.

Then, the shifted quasi-periodic Green functions in Ω± are given by

Gq
J±(X, Y ) =

∑

n∈Z

e−iαnLGJ±(X + nL, Y ), (4.42)

where for (X, Y ) ∈ R2, (X, Y ) 6= (0,∓lh±), l = 0, . . . , J , it holds

GJ±(X, Y ) =
i

4

J∑

l=0

(−1)l
(
J

l

)
H

(1)
0 (k±

√
X2 + (Y ± lh±)2). (4.43)

The functions GJ± are the J-th rapidly-decaying half-space Green functions in Ω+ and Ω−,
where the values h+ > 0 and h− > 0 are the shift distances in Ω+ and Ω−. Then, the
shifted quasi-periodic Green functions (4.42) are given by

Gq
J±(X, Y ) =

i

4

∑

n∈Z

e−iαnL
J∑

l=0

(−1)l
(
J

l

)
H

(1)
0 (k±

√
(X + nL)2 + (Y ± lh±)2). (4.44)

4.4.3 Integral formulation

Once the transmission problem is described, to work with the quasi-periodic Green
function it is necessary to consider domains formed only by a period. Let Ω#

+, Ω#
− and

Γ# be the intersection of Ω+, Ω− and Γ, respectively with the set (−L/2, L/2) × R (see
Figure 4.5),

Ω#
+ = {(x, y) ∈ (−L/2, L/2)× R : y > f(x)},

Ω#
− = {(x, y) ∈ (−L/2, L/2)× R : y < f(x)},

Γ# = {(x, f(x)), x ∈ (−L/2, L/2)}.

The transmission problem described in Section 4.4.1 can be reduced to a system of sec-
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−L
2

L
2

x

y

y = f(x)
ν

Ω#
+

Γ#

Ω#
−

θ+

Figure 4.5: Scheme of the periodic transmission problem. The intersection between the
propagation domain Ω+ (resp. Ω−) and the set [−L/2, L/2] × R is denoted by Ω#

+ (resp.

Ω#
−), and is highlighted in grey (resp. in cyan). Γ# is the intersection between the interface

Γ and the set [−L/2, L/2] × R (highlighted in blue), where L is the period, and θ+ is the
incidence angle.

ond kind integral equations over the curve Γ#. The scattered field, written as a linear
combination of a single- and double-layer potential, is given by

U s(x, y) =

∫ L/2

−L/2

[
∂Gq

J+

∂νx′
(x− x′, y − f(x′))ϕq(x′)−Gq

J+(x− x′, y − f(x′))φq(x′)

]

×
√

1 + f ′(x′)2dx′, (x, y) ∈ Ω#
+, (4.45)

and the transmitted field, given as a linear combination of a single- and double-layer po-
tential, is written as

U−(x, y) =

∫ L/2

−L/2

[
−∂G

q
J−

∂νx′
(x− x′, y − f(x′))ϕq(x′) +Gq

J−(x− x′, y − f(x′))φq(x′)

]

×
√

1 + f ′(x′)2dx′, (x, y) ∈ Ω#
−, (4.46)

where ν is the normal vector to Γ#, pointing outwards Ω#
−, which is defined in (4.37), Gq

J±
are the shifted quasi-periodic Green functions given in (4.44), and ϕq, φq are quasi-periodic
and continuous densities, solution of the system of integral equations (see [41] for further
details)





ϕq + (D− −D+)ϕq + (S+ − S−)φq = U inc(x, f(x)),
(x, f(x)) ∈ Γ#,

φq + (N− −N+)ϕq + (K+ −K−)φq =
∂U inc

∂νx
(x, f(x)),

(4.47)
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where U inc is the incident plane wave given in (4.30).
The integral operators S±, D±, N±, and K± are defined as follows:

S±[µ](x, y) =

∫ L/2

−L/2
Gq
J±(x− x′, y − f(x′))µ(x′)

√
1 + f ′(x′)2dx′,

D±[µ](x, y) =

∫ L/2

−L/2

∂Gq
J±

∂νx′
(x− x′, y − f(x′))µ(x′)

√
1 + f ′(x′)2dx′,

N±[µ](x, y) =

∫ L/2

−L/2

∂2Gq
J±

∂νx∂νx′
(x− x′, y − f(x′))µ(x′)

√
1 + f ′(x′)2dx′,

K±[µ](x, y) =

∫ L/2

−L/2

∂Gq
J±

∂νx
(x− x′, y − f(x′))µ(x′)

√
1 + f ′(x′)2dx′,

where S± are single-layer potentials, D± are double-layer potentials, N± are hypersingular
potentials and K± are adjoint double-layer potentials (see [107] for more details).

As in the sound-soft periodic problem, to solve (4.47) the integral operators are ap-
proximated by using a modification of the Nyström approach, based on the use of periodic
unknowns. Then, taking into account the changes of unknowns ϕper(x) = ϕq(x)e−iαx, and
φper(x) = φq(x)e−iαx, the system of integral equations (4.47) results

ϕper(x) +

∫ L/2

−L/2

(
∂Gq

J−

∂νx′
(x− x′, f(x)− f(x′))− ∂Gq

J+

∂νx′
(x− x′, f(x)− f(x′))

)

× ϕper(x′)γ(x, x′)
√

1 + f ′(x′)2dx′ +

∫ L/2

−L/2

(
Gq
J+(x− x′, f(x)− f(x′))

−Gq
J−(x− x′, f(x)− f(x′))

)
φper(x′)γ(x, x′)

√
1 + f ′(x′)2dx′ = U inc(x, f(x))e−iαx,

(4.48)

φper(x) +

∫ L/2

−L/2

(
∂2Gq

J−

∂νx∂νx′
(x− x′, f(x)− f(x′))− ∂2Gq

J+

∂νx∂νx′
(x− x′, f(x)− f(x′))

)

× ϕper(x′)γ(x, x′)
√

1 + f ′(x′)2dx′ +

∫ L/2

−L/2

(
∂Gq

J+

∂νx
(x− x′, f(x)− f(x′))

−∂G
q
J−

∂νx
(x− x′, f(x)− f(x′))

)
φper(x′)γ(x, x′)

√
1 + f ′(x′)2dx′ =

∂U inc

∂νx
(x, f(x))e−iαx,

(4.49)

where γ(x, x′) = e−iα(x−x′). To solve (4.48) and (4.49), first of all it is necessary to compute
the integrals in the left-hand side, that is,
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I1(x) =

∫ L/2

−L/2

[(
∂Gq

J−

∂νx′
(x− x′, f(x)− f(x′))− ∂Gq

J+

∂νx′
(x− x′, f(x)− f(x′))

)
ϕper(x′)

×γ(x, x′)
√

1 + f ′(x′)2
]

dx′, (4.50)

I2(x) =

∫ L/2

−L/2

[(
Gq
J+(x− x′, f(x)− f(x′))−Gq

J−(x− x′, f(x)− f(x′))
)
φper(x′)γ(x, x′)

×
√

1 + f ′(x′)2
]

dx′, (4.51)

I3(x) =

∫ L/2

−L/2

[(
∂2Gq

J−

∂νx∂νx′
(x− x′, f(x)− f(x′))− ∂2Gq

J+

∂νx∂νx′
(x− x′, f(x)− f(x′))

)

×ϕper(x′)γ(x, x′)
√

1 + f ′(x′)2
]

dx′, (4.52)

I4(x) =

∫ L/2

−L/2

[(
∂Gq

J+

∂νx
(x− x′, f(x)− f(x′))− ∂Gq

J−

∂νx
(x− x′, f(x)− f(x′))

)
φper(x′)

×γ(x, x′)
√

1 + f ′(x′)2
]

dx′. (4.53)

The integral operator involved in the definition of I1(x) is a double-layer potential. Then,
following a similar reasoning as in Section 4.3.1, integral (4.50) can be approximated by
using a windowing procedure as follows:

I1(x) =

∫ L/2

−L/2

[(
∂Gq

J−

∂νx′
(x− x′, f(x)− f(x′))− ∂Gq

J+

∂νx′
(x− x′, f(x)− f(x′))

)
ϕper(x′)

×γ(x, x′)
√

1 + f ′(x′)2
]

dx′ ≈
∫ ∞

−∞
[S(x− x′, cA,A)ϕper(x′)γ(x, x′)

×
(
∂GJ−

∂νx′
(x− x′, f(x)− f(x′))− ∂GJ+

∂νx′
(x− x′, f(x)− f(x′))

)√
1 + f ′(x′)2

]
dx′,

where, in a similar manner to Section 4.3.1, Lw± are defined as

Lw±(x, x′) = S(x− x′, cA,A)
∂GJ±

∂νx′
(x− x′, f(x)− f(x′))γ(x, x′)

√
1 + f ′(x′)2,

and using Lemma 4.2.4,

I1(x) =

∫ ∞

−∞
(Lw−(x, x′)− Lw+(x, x′))ϕper(x′)dx′

=

∫ x+A

x−A
(Lw−(x, x′)− Lw+(x, x′))ϕper(x′)dx′.
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The integral operator involved in the definition of I2(x) is a single-layer potential. Then,
following a similar reasoning as in Section 4.2.5, integral (4.51) can be approximated by
using a windowing technique as follows:

I2(x) =

∫ L/2

−L/2

[(
Gq
J+(x− x′, f(x)− f(x′))−Gq

J−(x− x′, f(x)− f(x′))
)
φper(x′)γ(x, x′)

×
√

1 + f ′(x′)2
]

dx′ ≈
∫ ∞

−∞
[S(x− x′, cA,A)φper(x′)γ(x, x′)

× (GJ+(x− x′, f(x)− f(x′))−GJ−(x− x′, f(x)− f(x′)))
√

1 + f ′(x′)2
]

dx′,

where, in a similar manner to Section 4.2.5, Mw± are defined as

Mw±(x, x′) = S(x− x′, cA,A)GJ±(x− x′, f(x)− f(x′))γ(x, x′)
√

1 + f ′(x′)2,

and considering Lemma 4.2.4,

I2(x) =

∫ ∞

−∞
(Mw−(x, x′)−Mw+(x, x′))φper(x′)dx′

=

∫ x+A

x−A
(Mw−(x, x′)−Mw+(x, x′))φper(x′)dx′.

Both integrals have been truncated considering the window function described in Sec-
tion 4.2.3, and following Theorem 4.2.3, superalgebraically convergence is obtained. Since in
Sections 4.2.5 and 4.3.1, the kernel decomposition of a single-layer potential, and a double-
layer potentials have been described, following similar arguments the decomposition of the
adjoint double-layer potential, and the hypersingular potential are described.

Adjoint double-layer potential

This section is devoted to describing the kernel decomposition of the adjoint double-
layer potential. For the sake of simplicity, in Section 4.B.3 in Appendix 4.B a detailed
decomposition of an adjoint double-layer potential in a periodic setting is described (the
reader is referred to this section in order to obtain more details). The integral considered,
taking into account Lemma 4.2.4, is

∫ L/2

−L/2

∂Gq
J

∂νx
(x− x′, f(x)− f(x′))φper(x′)γ(x, x′)

√
1 + f ′(x′)2dx′

=

∫ ∞

−∞

∂GJ

∂νx
(x− x′, f(x)− f(x′))φper(x′)γ(x, x′)

√
1 + f ′(x′)2dx′,

which involves an adjoint double-layer potential. This integral, following Theorem 4.2.3,
can be truncated to obtain superalgebraically convergence far away from Wood anomalies,
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by using the window function described in Section 4.2.3, and it results

∫ L/2

−L/2

∂Gq
J

∂νx
(x− x′, f(x)− f(x′))φper(x′)γ(x, x′)

√
1 + f ′(x′)2dx′

≈
∫ ∞

−∞
S(x− x′, cA,A)

∂GJ

∂νx
(x− x′, f(x)− f(x′))γ(x, x′)

√
1 + f ′(x′)2

︸ ︷︷ ︸
Hw(x, x′; J)

φper(x′)dx′

=

∫ ∞

−∞
Hw(x, x′; J)φper(x′)dx′ =

∫ x+A

x−A
Hw(x, x′; J)φper(x′)dx′. (4.54)

As it has been explained in previous sections, the decomposition of Hw in (4.54) is nec-
essary to deal with the logarithmic singularity appearing at x = x′. In Section 4.B.3 in
Appendix 4.B, a detailed decomposition of an adjoint-double-layer potential in a periodic
setting is explained. The decomposition of H shown in that section can be used by the
reader to obtain better comprehension of this section. Then, following the same steps ap-
plied for H, the kernel Hw can be split in a smooth and a logarithmic part. When x−x′ is an
integer multiple of 2π, the kernel Hw presents singularities (see Section 4.2.4 for the study of
the convergence of GJ), and in this case, since the integration interval is −A < x− x′ < A,
|x − x′| < 2π is not always satisfied. To overcome these difficulties, the additional cut-off
function Pl defined in (4.16) is used in Hwl (see (4.56)). Then, the integrand in (4.54) can
be rewritten as the sum of a smooth kernel Hwr, and a logarithm part (see Remark 4.2.5
for subscript notation) in the form

Hw(x, x′; J) = S(x− x′, cA,A)
∂GJ

∂νx
(x− x′, f(x)− f(x′))γ(x, x′)

√
1 + f ′(x′)2

=
i

4
S(x− x′, cA,A)

J∑

l=0

(−1)l
(
J

l

)
∂H

(1)
0

∂νx

(
k
√

(x− x′)2 + (f(x)− f(x′) + lh)2
)

× γ(x, x′)
√

1 + f ′(x′)2 = −ik
4
S(x− x′, cA,A)γ(x, x′)

√
1 + f ′(x′)2

√
1 + f ′(x)2

×
J∑

l=0

[
(−1)l

(
J

l

)
H

(1)
1

(
k
√

(x− x′)2 + (f(x)− f(x′) + lh)2
)

×−f
′(x)(x− x′) + f(x)− f(x′) + lh√
(x− x′)2 + (f(x)− f(x′) + lh)2

]

= Hwl(x, x
′) ln

(
4 sin2

(π
L

(x− x′)
))

+Hwr(x, x
′). (4.55)

Problem without shifts As in the decomposition of kernels L and M in Sections 4.2.5
and 4.3.1, respectively, first of all the problem without shifts is considered, that is, J = 0.
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In a similar way to the kernel decomposition described in (4.B.13), considering (4.55) the
logarithmic part and the smooth kernel Hwr result,

Hwl(x, x
′; 0) =

k

4π
Pl(x− x′, dl, Al)J1

(
k
√

(x− x′)2 + (f(x)− f(x′))2
)

× −f
′(x)(x− x′) + f(x)− f(x′)√
(x− x′)2 + (f(x)− f(x′))2

√
1 + f ′(x′)2

√
1 + f ′(x)2

, (4.56)

Hwr(x, x
′; 0) = Hw(x, x′; 0)−Hwl(x, x

′; 0) ln
(

4 sin2
(π
L

(x− x′)
))

, (4.57)

where

Hw(x, x′; 0) = S(x− x′, cA,A)
∂GJ

∂νx
(x− x′, f(x)− f(x′))γ(x, x′)

√
1 + f ′(x′)2

=
i

4
S(x− x′, cA,A)

∂H
(1)
0

∂νx

(
k
√

(x− x′)2 + (f(x)− f(x′))2
)
γ(x, x′)

√
1 + f ′(x′)2

= −ik
4
S(x− x′, cA,A)H

(1)
1

(
k
√

(x− x′)2 + (f(x)− f(x′))2
)
γ(x, x′)

× −f
′(x)(x− x′) + f(x)− f(x′)√
(x− x′)2 + (f(x)− f(x′))2

√
1 + f ′(x′)2

√
1 + f ′(x)2

. (4.58)

When x′ → x, γ(x, x) = 1, and Pl(x, x) = 1. Then, taking into account the definition
of Hwl (4.56), and the limit of the Bessel function J1(t) when t → 0 (see (4.A.10) in
Appendix 4.A), and proceeding in a similar way to (4.B.16), the values of the kernel Hwl

at x = x′ result

Hwl(x, x; 0) = lim
x′→x

Hwl(x, x
′; 0) = lim

x′→x

k2

8π
Pl(x−x′, dl, Al)(−f ′(x′)(x−x′)+f(x)−f(x′)) = 0.

Considering (4.56), (4.57), and (4.58), and proceeding in a similar manner to (4.B.18), the
values of Hwr at x = x′ are

Hwr(x, x; 0) = lim
x′→x

Hwr(x, x
′; 0) = lim

x′→x

[
Hw(x, x′; 0)−Hwl(x, x

′; 0) ln
(

4 sin2
(π
L

(x− x′)
))]

=
f ′′(x)

4π(1 + f ′(x)2)
. (4.59)

Problem with shifts Now, the problem with shifts is considered, that is, J > 0. Simi-
larly to the problem without shifts, Hwl(x, x

′; J) and Hwr(x, x
′, J) are defined as in (4.56)

and (4.57), but in this case, Hw is given by (4.55). At x = x′, γ(x, x) = 1 and Pl(x, x) = 1.
Taking into account (4.55), (4.56), and (4.57), the values of the function Hwr(x, x; J) at
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x = x′ can be written as

Hwr(x, x; J) = lim
x′→x

Hwr(x, x
′; J) = lim

x′→x

[
Hw(x, x′; J)−Hwl(x, x

′; J) ln
(

4 sin2
(π
L

(x− x′)
))]

= lim
x′→x

[
−ik

4
S(x− x′, cA,A)γ(x, x′)

√
1 + f ′(x′)2

√
1 + f ′(x)2

×
J∑

l=0

[
(−1)l

(
J

l

)
H

(1)
1

(
k
√

(x− x′)2 + (f(x)− f(x′) + lh)2
)

×−f
′(x)(x− x′) + f(x)− f(x′) + lh√
(x− x′)2 + (f(x)− f(x′) + lh)2

]
− k

4π
ln
(

4 sin2
(π
L

(x− x′)
))

×Pl(x− x′, dl, Al)J1

(
k
√

(x− x′)2 + (f(x)− f(x′))2
)

×−f
′(x)(x− x′) + f(x)− f(x′)√
(x− x′)2 + (f(x)− f(x′))2

]
.

The singularities in the Hankel function H
(1)
1 appear when l = 0 so, the summation is

separated in two parts: when l = 0, and (4.59) can be used, and when l > 0. Then, the
values of Hwr at x = x′ are

Hwr(x, x; J) = lim
x′→x

Hwr(x, x
′; J) = lim

x′→x

[
−ik

4
S(x− x′, cA,A)γ(x, x′)

√
1 + f ′(x′)2

√
1 + f ′(x)2

×H(1)
1

(
k
√

(x− x′)2 + (f(x)− f(x′))2
) −f ′(x)(x− x′) + f(x)− f(x′)√

(x− x′)2 + (f(x)− f(x′))2

− k

4π
Pl(x− x′, dl, Al) ln

(
4 sin2

(π
L

(x− x′)
))

× J1

(
k
√

(x− x′)2 + (f(x)− f(x′))2
) −f ′(x)(x− x′) + f(x)− f(x′)√

(x− x′)2 + (f(x)− f(x′))2

− ik

4
γ(x, x′)

J∑

l=1

[
(−1)l

(
J

l

)
H

(1)
1

(
k
√

(x− x′)2 + (f(x)− f(x′) + lh)2
)

×−f
′(x)(x− x′) + f(x)− f(x′) + lh√
(x− x′)2 + (f(x)− f(x′) + lh)2

]
S(x− x′, cA,A)

√
1 + f ′(x′)2

√
1 + f ′(x)2

]

=
f ′′(x)

4π(1 + f ′(x)2)
− ik

4

J∑

l=1

(−1)l
(
J

l

)
H

(1)
1 (klh).
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Hypersingular formulation

This section is devoted to describing the kernel decomposition of the normal derivative
of a double-layer potential (hypersingular potential). In order to deal with this opera-
tor, the difference of hypersingular potentials is considered because, in such a way, the
singularities appearing in the kernels disappear. Moreover, since the hypersingular kernel
appearing in the original problem uses the shifting and windowing methods (described in
Sections 4.2.3 and 4.2.4) what can difficult the comprehension of the decomposition, the
reader is referred to Section 4.B.4 in Appendix 4.B to get a detail and complete description
of the decomposition of the difference of two hypersingular kernel in a periodic setting.

Now, the integral with the difference of the hypersingular potentials appearing in the
transmission problem is considered. Once again, taking into account Lemma 4.2.4, the
integral results

I(x) =

∫ L/2

−L/2

[(
∂2Gq

J−

∂νx∂νx′
(x− x′, f(x)− f(x′))− ∂2Gq

J+

∂νx∂νx′
(x− x′, f(x)− f(x′))

)
ϕper(x′)

×γ(x, x′)
√

1 + f ′(x′)2
]

dx′ =

∫ ∞

−∞

[(
∂2GJ−

∂νx∂νx′
(x− x′, f(x)− f(x′))

− ∂2GJ+

∂νx∂νx′
(x− x′, f(x)− f(x′))

)
ϕper(x′)γ(x, x′)

√
1 + f ′(x′)2

]
dx′.

By using the window function described in Section 4.2.3, last integral can be truncated,
and superalgebraically convergence can be achieved far away from Wood anomalies (see
Theorem 4.2.3), and it results

I(x) ≈
∫ ∞

−∞

[
γ(x, x′)

(
∂2GJ−

∂νx∂νx′
(x− x′, f(x)− f(x′))− ∂2GJ+

∂νx∂νx′
(x− x′, f(x)− f(x′))

)

×ϕper(x′)S(x− x′, cA,A)
√

1 + f ′(x′)2
]

dx′, (4.60)

where Kw is defined as

Kw(x, x′; J) =

(
∂2GJ−

∂νx∂νx′
(x− x′, f(x)− f(x′))− ∂2GJ+

∂νx∂νx′
(x− x′, f(x)− f(x′))

)

× S(x− x′, cA,A)γ(x, x′)
√

1 + f ′(x′)2,

and then

I(x) =

∫ ∞

−∞
Kw(x, x′; J)ϕper(x′)dx′ =

∫ x+A

x−A
Kw(x, x′; J)ϕper(x′)dx′.

To deal with the logarithmic singularity appearing at x = x′, it is necessary to study the
decomposition of the kernel Kw. The reader is referred to Section 4.B.4 in Appendix 4.B



158 Simulation of layered non-planar geometries

to get a better comprehension of the decomposition below (in the appendix a detailed
decomposition of the difference of two hypersingular potentials in a periodic setting is
given). Following the same steps applied for K , the kernel Kw can be split in a smooth
and a logarithmic part. When x − x′ is an integer multiple of 2π, the kernel Kw presents
singularities (see Section 4.4.2 for the study of the convergence of GJ±) and, since the
integration interval is −A < x− x′ < A, the condition |x− x′| < 2π is not always satisfied.
Then, it is necessary to use the additional cut-off function Pl, defined in (4.16), in K1

wl and
K2

wl (see (4.62) and (4.64)). Hence, the integrand in (4.60) can be rewritten as the sum
of a smooth kernel and a logarithm part (see Remark 4.2.5 for subscript notation) in the
following form:

Kw(x, x′; J) = K1
w(x, x′; J) +K2

w(x, x′; J) = S(x− x′, cA,A)γ(x, x′)
√

1 + f ′(x′)2

×
(
∂2GJ−

∂νx∂νx′
(x− x′, f(x)− f(x′))− ∂2GJ+

∂νx∂νx′
(x− x′, f(x)− f(x′))

)

= (K1
wl(x, x

′; J) +K2
wl(x, x

′; J)) ln
(

4 sin2
(π
L

(x− x′)
))

+ (K1
wr(x, x

′; J) +K2
wr(x, x

′; J)). (4.61)

Problem without shifts As in the decomposition of the kernel L, M and H, first of
all the problem without shifts is considered, that is, J = 0. In a similar way to the kernel
decompositions of (4.B.25) and (4.B.26), considering (4.61), the logarithmic part and the
smooth kernel K1

wr and K2
wr result,

K1
wl(x, x

′; 0) =
1

4π
Pl(x− x′, dl, Al)

[
k2
−J2

(
k−
√

(x− x′)2 + (f(x)− f(x′))2
)

−k2
+J2

(
k+
√

(x− x′)2 + (f(x)− f(x′))2
)]
χ(x, x′; 0)

× χ̃(x, x′; 0)
√

1 + f ′(x′)2, (4.62)

K1
wr(x, x

′; 0) = K1
w(x, x′; 0)−K1

wl(x, x
′; 0) ln

(
4 sin2

(
x− x′

2

))
, (4.63)

K2
wl(x, x

′; 0) = − 1

4π
Pl(x− x′, dl, Al)

[
k−J1

(
k−
√

(x− x′)2 + (f(x)− f(x′))2
)

−k+J1

(
k+
√

(x− x′)2 + (f(x)− f(x′))2
)]
ξ(x, x′; 0), (4.64)

K2
wr(x, x

′; 0) = K2
w(x, x′; 0)−K2

wl(x, x
′; 0) ln

(
4 sin2

(
x− x′

2

))
, (4.65)

where χ(x, x′; δ), χ̃(x, x′; δ), and ξ(x, x′; δ) are the functions (4.B.20), (4.B.22), and (4.B.23),
respectively, defined in Section 4.B.4 in Appendix 4.B.
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The kernels K1
w(x, x′; 0) and K2

w(x, x′; 0) are given by

K1
w(x, x′; 0) = − i

4
S(x− x′, cA,A)γ(x, x′)

[
k2
−H

(1)
2

(
k−
√

(x− x′)2 + (f(x)− f(x′))2
)

−k2
+H

(1)
2

(
k+
√

(x− x′)2 + (f(x)− f(x′))2
)]
χ(x, x′; 0)

× χ̃(x, x′; 0)
√

1 + f ′(x′)2, (4.66)

K2
w(x, x′; 0) =

i

4
S(x− x′, cA,A)

[
k−H

(1)
1

(
k−
√

(x− x′)2 + (f(x)− f(x′))2
)

− k+H
(1)
1

(
k+
√

(x− x′)2 + (f(x)− f(x′))2
)]
ξ(x, x′; 0)γ(x, x′). (4.67)

When x′ → x, γ(x, x) = 1, and Pl(x, x) = 1. Then, using the asymptotic value of χ and χ̃
when x = x′ (see (4.B.31) and (4.B.32) in the Appendix), the values of the kernel K1

wl at
x = x′ results

K1
wl(x, x; 0) = lim

x′→x
K1

wl(x, x
′; 0) = 0,

and considering (4.62), (4.63), and (4.66), the values of K1
wr at x = x′ result

K1
wr(x, x; 0) = lim

x′→x
K1

wr(x, x
′; 0) = 0.

To compute the values of K2
wl and K2

wr when x = x′, a similar reasoning than in (4.B.33) is
used. Taking into account (4.64),

K2
wl(x, x; 0) = lim

x′→x
K2

wl(x, x
′; 0) = lim

x′→x
− 1

4π

(
k−J1

(
k−
√

(x− x′)2 + (f(x)− f(x′))2
)

− k+J1

(
k+
√

(x− x′)2 + (f(x)− f(x′))2
))

ξ(x, x′; 0)

= − 1

8π
((k−)2 − (k+)2)

√
1 + f ′(x)2,

and considering (4.64), (4.65), and (4.67),

K2
wr(x, x; 0) = lim

x′→x
K2

wr(x, x
′; 0) = lim

x′→x

[
K2

w(x, x′; 0)−K2
wl(x, x

′; 0) ln

(
4 sin2

(
x− x′

2

))]

=

((
i

8
− C

4π
+

1

8π

)(
k2
− − k2

+

)
− 1

4π

[
k2
− ln

(
k−

2

√
1 + f ′(x)2

)

−k2
+ ln

(
k+

2

√
1 + f ′(x)2

)])√
1 + f ′(x)2,

where C is the Euler’s constant given by (4.A.3).
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Problem with shifts Now, the problem with shifts is considered, that is, J > 0. Simi-
larly to the problem without shifts, K1

wl, K
1
wr, K

2
wl, andK2

wr are defined as in (4.62), (4.63),(4.64),
and (4.65), but in this case, K1

w and K2
w are given by

K1
w(x, x′; J) = − i

4
S(x− x′, cA,A)γ(x, x′)

√
1 + f ′(x′)2

(
J∑

l=0

[
(−1)l

(
J

l

)

×
[
k2
−H

(1)
2

(
k−
√

(x− x′)2 + (f(x)− f(x′)− lh−)2
)
χ(x, x′;−lh−)χ̃(x, x′;−lh−)

−k2
+H

(1)
2

(
k+
√

(x− x′)2 + (f(x)− f(x′) + lh+)2
)
χ(x, x′; lh+)χ̃(x, x′; lh+)

]])
,

(4.68)

K2
w(x, x′; J) =

i

4
γ(x, x′)S(x− x′, cA,A)

1 + f ′(x)f ′(x′)√
1 + f ′(x)2

×
J∑

l=0


(−1)l

(
J

l

)
k−

H
(1)
1

(
k−
√

(x− x′)2 + (f(x)− f(x′)− lh−)2
)

√
(x− x′)2 + (f(x)− f(x′)− lh−)2

− k+
H

(1)
1

(
k+
√

(x− x′)2 + (f(x)− f(x′) + lh+)2
)

√
(x− x′)2 + (f(x)− f(x′) + lh+)2




 . (4.69)

When x = x′ γ(x, x) = 1, and Pl(x, x) = 1. Taking into account (4.62), (4.63), and (4.68),
the values of the kernel K1

wr(x, x; J) at x = x′ can be computed as

K1
wr(x, x; J) = lim

x′→x
K1

wr(x, x
′; J) = lim

x′→x

[
K1

w(x, x′; J)−K1
wl(x, x

′; J) ln

(
4 sin2

(
x− x′

2

))]

= − i
4

J∑

l=1

(−1)l
(
J

l

)[k2
−H

(1)
2 (−k−lh−)− k2

+H
(1)
2 (k+lh+))

]

√
1 + f ′(x)2

.

Moreover, considering (4.64), (4.65), and (4.69), the values of K2
wr(x, x; J) at x = x′ can be

calculated as

K2
wr(x, x; J) = lim

x′→x
K2

wr(x, x
′; J) = lim

x′→x

(
K2

w(x, x′; J)−K2
wl(x, x

′; J) ln

(
4 sin2

(
x− x′

2

)))

=

((
i

8
− C

4π
+

1

8π

)(
k2
− − k2

+

)
− 1

4π

[
k2
− ln

(
k−

2

√
1 + f ′(x)2

)

−k2
+ ln

(
k+

2

√
1 + f ′(x)2

)]
+
i

4

J∑

l=1

(−1)l
(
J

l

)[
k−
H

(1)
1 (−k−lh−)

−lh−

−k+H
(1)
1 (k+lh+)

lh+

])
√

1 + f ′(x)2,

where C is the Euler’s constant given by (4.A.3).
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4.5 Discretization

The numerical method described in this chapter uses the windowing function method,
and the shifted Green function detailed in Section 4.2.4. This method is based on a Nyström
approach, and on the use of periodic unknowns. An analogous method applied to a simpler
setting was firstly introduced in [39]. Throughout the following sections, the quadrature
rules used for an efficient evaluation of integral operators appearing along this chapter
are described. Moreover, a convergence test used to study the convergence order of the
proposed method is detailed. Taking into account the quadrature rules, it is possible to
give a discretization of the problems appearing in this chapter.

4.5.1 MKN quadrature rules

By using the Nyström method [138], and the Martensen and Kussmaul decomposi-
tions [108, 122], the integrals can be approximated by quadrature formulas. In the present
case, for the L-periodic integrands, an equidistant discretization mesh containing an even
number nI of points per period of the scattering surface is chosen. Thus, the (2N + 1)nI
discretization points xj are defined by

xj :=

(
−L

2
−NL

)
+ (j − 1)

L

nI
, j = 1, . . . , (2N + 1)nI , (4.70)

where N = dA
L
e is the number of periodic intervals contained in the integration domain to

the right of the point x = L
2
. Since the integrands in the (−∞,∞) integrals are compactly

supported functions with supports contained in the interval (x− Al, x + Al), the integrals
related to the logarithm part are approximated by means of the quadrature rule

Il(x) =

∫ ∞

−∞
ln
(

4 sin2
(π
L

(x− x′)
))

Twl(x, x
′)Φper(x′)dx′

=

∫ x+Al

x−Al
ln
(

4 sin2
(π
L

(x− x′)
))

Twl(x, x
′)Φper(x′)dx′

≈ L

2π

∑

|x−xj |≤Al

Rj,nI

(
2πx

L

)
Twl(x, xj)Φ

per(xj), (4.71)

where Φper is a periodic function of period L, Twl is a smooth function of x and x′, which
may be one of the kernels previously studied (Lwl, Mwl, Hwl, K

1
wl, or K2

wl), and Rj,nI are
the quadrature weights (see [107] for further details) given by

Rj,nI (t) =
1

nI

nI
2∑

q=−nI
2

+1

∫ 2π

0

e
iq
(

2πxj
L

+τ−t
)

ln
(

4 sin2 τ

2

)
dτ,

which using the expression

1

2π

∫ 2π

0

ln
(

4 sin2 τ

2

)
eimτdτ =

{
0 if m = 0,
− 1
m

if m ∈ N, n > 0,
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it results

Rj,nI (t) = −4π

nI



nI
2
−1∑

q=1

1

q
cos

(
q

(
2π

L
(x− xj)

))
− 4π

n2
I

cos

(
nI
2

(
2π

L
(x− xj)

))
.

On the other hand, the integrals related to the smooth kernels are approximated by means
of the composite trapezoidal rule

Ir(x) =

∫ ∞

−∞
Twr(x, x

′)Φper(x′)dx′ =

∫ x+A

x−A
Twr(x, x

′)Φper(x′)dx′

≈ L

nI

∑

|x−xj |≤A

Twr(x, xj)Φ
per(xj), (4.72)

where Φper is a periodic function of period L, and Twr is a smooth function of x and x′,
which may be one of the kernels previously studied (Lwr, Mwr, Hwr, K

1
wr, or K2

wr).

Remark 4.5.1. Let f(x) ∈ C2
[
−L

2
, L

2

]
be a L− periodic function, and an equidistant set

of nI + 1 points xk = −L
2

+ k L
nI

, with k = 0, . . . , nI . Then, the composite trapezoidal rule
is given by

∫ L/2

−L/2
f(x)dx ≈ L

nI

[
f
(
−L

2

)
+ f

(
L
2

)

2
+

nI−1∑

k=1

f(xj)

]
=

L

nI

[
f

(
−L

2

)
+

nI−1∑

k=1

f(xj)

]

=
L

nI

nI−1∑

k=0

f(xj),

and the error can be estimated by ε =
1

12

(b− a)3

n2
I

f ′′(ξ), ξ ∈
[
−L

2
,
L

2

]
.

4.5.2 Efficiency computation

In order to perform a convergence test for the numerical solution of the scattering
problem in a sound-soft boundary, and of the transmission problem, a relation between the
Rayleigh coefficients of the solution is used (see (4.2) to recall the definition of the scattered
field in terms of the Rayleigh coefficients in the sound-soft boundary problem, and (4.38),
and (4.40) to recall the definition of the scattered, and the transmitted field in terms of the
Rayleigh coefficients in the transmission problem). This relation is given by the principle
of conservation of energy (see [123]).

Sound-soft boundary

Following [45], for each n ∈ Λ = {n ∈ Z : α2
n < k2}, where αn is defined in (4.3), and k

the wave number of the propagation medium, the nth-order efficiency is defined as

en = |an|2
βn
β0

, (4.73)
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where βn is defined in (4.4). The energy balance criterion is given by

∑

n∈Λ

en = 1⇔
∑

n∈Λ

|an|2βn = β0, (4.74)

where an are the Rayleigh coefficients.

When a single-layer formulation is considered, as it is explained in Section 4.2.5, the
scattered field is given by

U s(x, y) =

∫ L/2

−L/2
−Gq

J(x− x′, y − f(x′))ϕq(x′)
√

1 + f ′(x′)2dx′, (4.75)

and considering the Rayleigh expansion of the Green function Gq
J given in (4.10), the

expression (4.75) results

U s(x, y) =

∫ L/2

−L/2
−
[∑

n∈Z

i

2Lβn

(
J∑

l=0

(−1)l
(
J

l

)
eiβnlh

)
eiαn(x−x′)+iβn(y−f(x′))ϕq(x′)

×
√

1 + f ′(x′)2
]

dx′.

Since {eiαnx}n∈N is an orthogonal system in L2(−L/2, L/2), taking into account (4.2), for
a fixed y = y0, it holds

U s(x, y0) =
∑

n∈Z

ane
i(αnx+βny0),

with an the Rayleigh coefficients given by

an = − i

2Lβn

(
J∑

l=0

(−1)l
(
J

l

)
eiβnlh

)∫ L/2

−L/2
e−iαnx

′−iβnf(x′)ϕq(x′)
√

1 + f ′(x′)2dx′. (4.76)

When a double-layer formulation is considered, as it is explained in Section 4.3.1, the
scattered field is given by

U s(x, y) =

∫ L/2

−L/2

∂Gq
J

∂νx′
(x− x′, y − f(x′))ϕq(x′)

√
1 + f ′(x′)2dx′, (4.77)

and considering the Rayleigh expansion of the Green function Gq
J given in (4.10), it is

possible to compute the normal derivative
∂Gq

J

∂νx′
as

∂Gq
J

∂νx′
(x− x′, y − f(x′)) =

∑

n∈Z

1

2Lβn

(
J∑

l=0

(−1)l
(
J

l

)
eiβnlh

)
−αnf ′(x′) + βn√

1 + f ′(x′)2
eiαn(x−x′)+iβn(y−f(x′)).
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Then, the expression (4.77) results

U s(x, y) =

∫ L/2

−L/2

[∑

n∈Z

1

2Lβn

(
J∑

l=0

(−1)l
(
J

l

)
eiβnlh

)
eiαn(x−x′)+iβn(y−f(x′))(−αnf ′(x′) + βn)

×ϕq(x′)] dx′.

Since {eiαnx}n∈N is an orthogonal system in L2(−L/2, L/2), taking into account (4.2), for
a fixed y = y0, it holds

U s(x, y0) =
∑

n∈Z

ane
i(αnx+βny0),

where the Rayleigh coefficients an are defined by

an =
1

2Lβn

(
J∑

l=0

(−1)l
(
J

l

)
eiβnlh

)∫ L/2

−L/2
(−αnf ′(x′) + βn)e−iαnx

′−iβnf(x′)ϕq(x′)dx′. (4.78)

Transmission problem

Following [46], for each n ∈ Λ± = {n ∈ Z : (α±n )2 < (k±)2}, the nth-order efficiency in
Ω± is defined as

e±n = |a±n |2
β±n
β+

0

, (4.79)

where β+
n , and β−n are defined by (4.39), and (4.41), respectively. Then, the energy balance

criterion is given by

∑

n∈Λ−

e−n +
∑

n∈Λ+

e+
n = 1⇔

∑

n∈Λ−

|a−n |2
β−n
β+

0

+
∑

n∈Λ+

|a+
n |2

β+
n

β+
0

= 1. (4.80)

In the transmission problem described in Section 4.4.3, the scattered field is given by

U s(x, y) =

∫ L/2

−L/2

([
∂Gq

J+

∂νx′
(x− x′, y − f(x′))ϕq(x′)

−Gq
J+(x− x′, y − f(x′))φq(x′)

]√
1 + f ′(x′)2

)
dx′. (4.81)

Considering the Rayleigh expansion of the Green function Gq
J given by (4.10), it holds

Gq
J±(x− x′, y − f(x′)) =

∑

n∈Z

i

2Lβ±n

(
J∑

l=0

(−1)l
(
J

l

)
eiβ
±
n lh
±

)
eiα
±
n (x−x′)±iβ±n (y−f(x′)), (4.82)

∂Gq
J±

∂νx′
(x− x′, y − f(x′)) =

∑

n∈Z

[
1

2Lβ±n

(
J∑

l=0

(−1)l
(
J

l

)
eiβ
±
n lh
±

)
−α±n f ′(x′)± β±n√

1 + f ′(x′)2

×eiα±n (x−x′)±iβ±n (y−f(x′))
]
. (4.83)
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By using (4.82) and (4.83), the expression (4.81) results

U s(x, y) =

∫ L/2

−L/2

[∑

n∈Z

1

2Lβ+
n

(
J∑

l=0

(−1)l
(
J

l

)
eiβ

+
n lh

+

)(
−α+

n f
′(x′) + β+

n√
1 + f ′(x′)2

ϕq(x′)

−iφq(x′)) eiαn(x−x′)+iβn(y−f(x′))
√

1 + f ′(x′)2
]

dx′.

Since {eiαnx}n∈N is an orthogonal system in L2(−L/2, L/2), taking into account (4.38), for
a fixed y = y0, it holds

U s(x, y0) =
∑

n∈Z

a+
n e

i(α+
n x+β+

n y0),

with a+
n the Rayleigh coefficients given by

a+
n =

1

2Lβ+
n

(
J∑

l=0

(−1)l
(
J

l

)
eiβ

+
n lh

+

)∫ L/2

−L/2

[(
−α+

n f
′(x′) + β+

n√
1 + f ′(x′)2

ϕq(x′)

−iφq(x′)) e−iα
+
n x
′−iβ+

n f(x′)
√

1 + f ′(x′)2
]

dx′. (4.84)

On the other hand, the transmitted field is given by

U−(x, y) =

∫ L/2

−L/2

([
−∂G

q
J−

∂νx′
(x− x′, y − f(x′))ϕq(x′)

+Gq
J−(x− x′, y − f(x′))φq(x′)

]√
1 + f ′(x′)2

)
dx′, (4.85)

and considering (4.82) and (4.83), the expression (4.85) results

U s(x, y) =

∫ L/2

−L/2

[∑

n∈Z

1

2Lβ−n

(
J∑

l=0

(−1)l
(
J

l

)
eiβ
−
n lh
−

)(
α−n f

′(x′) + β−n√
1 + f ′(x′)2

ϕq(x′)

+iφq(x′)) eiα
−
n (x−x′)−iβ−n (y−f(x′))

√
1 + f ′(x′)2

]
dx′.

Since {eiαnx}n∈N is an orthogonal system in L2(−L/2, L/2), taking into account (4.40), for
a fixed y = y0, it holds

U s(x, y0) =
∑

n∈Z

a−n e
i(α−n x−β−n y0),

where the Rayleigh coefficients a−n are given as follows

a−n =
1

2Lβ−n

(
J∑

l=0

(−1)l
(
J

l

)
eiβ
−
n lh
−

)∫ L/2

−L/2

[(
α−n f

′(x′) + β−n√
1 + f ′(x′)2

ϕq(x′)

+iφq(x′)) e−iα
−
n x
′+iβ−n f(x′)

√
1 + f ′(x′)2

]
dx′. (4.86)
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4.5.3 Discrete problems

Considering the quadrature rules described in Section 4.5.1, it is possible to give the
discrete formulation of the scattering problem in a sound-soft boundary, and of the trans-
mission problem. In the present chapter, the Nyström method with an equidistant and
even number nI of collocation points is used. These points xk are defined by

xk :=
L

nI
(k − 1)− L

2
, k = 1, . . . , nI .

Scattering problem in a sound-soft boundary with a single-layer formulation

As it has been described in Section 4.2.5, the integral equation of the scattering problem
with the single-layer formulation is given by
∫ L/2

−L/2
Gq
J(x− x′, f(x)− f(x′))ϕper(x′)γ(x, x′)

√
1 + f ′(x′)2dx′=U inc(x, f(x))e−iαx, (4.87)

with x ∈ [−L/2, L/2], and considering the truncated integral (4.15), and the decomposi-
tion (4.17), the integral equation (4.87) results
∫ x+A

x−A

[
Mwl(x, x

′; J) ln
(

4 sin2
(π
L

(x− x′)
))

+Mwr(x, x
′; J)

]
ϕper(x′)

√
1 + f ′(x′)2dx′

= U inc(x, f(x))e−iαx, with x ∈ [−L/2, L/2], (4.88)

where 2A is the window size used to truncate the integral. Considering the discrete space
Vh = {φ ∈ Cper([−L/2, L/2]) : φ|[xk,xk+1] ∈ P1}, since the functional space Cper([−L/2, L/2])

can be replaced by the discrete space Vh, Equation (4.88) can be approximated by:
∫ x+A

x−A

[
Mwl(x, x

′; J) ln
(

4 sin2
(π
L

(x− x′)
))

+Mwr(x, x
′; J)

]
ϕper
h (x′)

√
1 + f ′(x′)2dx′

= U inc(x, f(x))e−iαx, with x ∈ [−L/2, L/2], (4.89)

with ϕper
h ∈ Vh. Let

−−→
ϕper
h be the column vector of coefficients of ϕper in the basis associated

with Vh, ϕ
per
h (x) =

nI∑

k=1

[
−−→
ϕper
h ]kWk(x). Then, the matrix formulation of the problem (4.89) is

AM

−−→
ϕper
h = B,

where the coefficients of the matrix AM, and the vector B are given by

[AM]k =

∫ x+A

x−A
Mwl(xk, x

′; J) ln
(

4 sin2
(π
L

(xk − x′)
))

Wk(x
′)
√

1 + f ′(x′)2dx′

+

∫ x+A

x−A
Mwr(xk, x

′; J)Wk(x
′)
√

1 + f ′(x′)2dx′,

[B]k = U inc(xk, f(xk))e
−iαxk ,
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for k = 1, . . . , nI . Now, choosing the discretization points (4.70), and applying the quadra-
ture rules (4.71) to Mwl, and (4.72) to Mwr, the integral equation (4.88) can be replaced by
the approximated equation


 L

2π

∑

|xk−xj |≤Al

Rj,nI

(
2πxk
L

)
Mwl(xk, xj; J)Wk(xj)

+
L

nI

∑

|xk−xj |≤A

Mwr(xk, xj; J)Wk(xj)


−−→ϕper

h = U inc(xk, f(xk))e
−iαxk ,

for k = 1, . . . , nI .

Scattering problem in a sound-soft boundary with a double-layer formulation

As it has been described in Section 4.3.1, the integral equation solved with the double-
layer formulation is

ϕper(x) + 2

∫ L/2

L/2

∂Gq
J

∂νx′
(x− x′, f(x)− f(x′))ϕper(x′)γ(x, x′)

√
1 + f ′(x′)2dx′

= −2U inc(x, f(x))e−iαx, with x ∈ [−L/2, L/2], (4.90)

and considering the truncated integral (4.25), and the decomposition (4.26), the integral
equation (4.90) results

ϕper(x) + 2

∫ x+A

x−A

([
Lwl(x, x

′; J) ln
(

4 sin2
(π
L

(x− x′)
))

+ Lwr(x, x
′; J)

]

×ϕper(x′))
√

1 + f ′(x′)2dx′ = −2U inc(x, f(x))e−iαx, with x ∈ [−L/2, L/2], (4.91)

where 2A is the size of the window used in the windowing method considered to obtain
the fast convergence of the results. Let Vh = {φ ∈ Cper([−L/2, L/2]) : φ|[xk,xk+1] ∈ P1}.
Since the functional space Cper([−L/2, L/2]) can be replaced by the discrete space Vh, the
approximation of Equation (4.91) is defined by:

ϕper
h (x) + 2

∫ x+A

x−A

([
Lwl(x, x

′; J) ln
(

4 sin2
(π
L

(x− x′)
))

+ Lwr(x, x
′; J)

]

×ϕper
h (x′))

√
1 + f ′(x′)2dx′ = −2U inc(x, f(x))e−iαx, with x ∈ [−L/2, L/2], (4.92)

with ϕper
h ∈ Vh. Let

−−→
ϕper
h be the column vector of coefficients of ϕper in the basis associated

with Vh, ϕ
per
h (x) =

nI∑

k=1

[
−−→
ϕper
h ]kWk(x). Then, the matrix formulation of the problem (4.92) is

(I + 2AL)
−−→
ϕper
h = −2B,
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where I is the identity matrix of size nI , and the coefficients of the matrix AL, and the
vector B are given by

[AL]k =

∫ x+A

x−A
Lwl(xk, x

′; J) ln
(

4 sin2
(π
L

(xk − x′)
))

Wk(x
′)
√

1 + f ′(x′)2dx′

+

∫ x+A

x−A
Lwr(xk, x

′; J)Wk(x
′)
√

1 + f ′(x′)2dx′,

[B]k = U inc(xk, f(xk))e
−iαxk ,

for k = 1, . . . , nI . Now, choosing the discretization points (4.70), and applying the quadra-
ture rules (4.71) to Lwl, and (4.72) to Lwr, the integral equation (4.91) can be replaced by
the approximated equation

[
Wk(xk) +

L

π

∑

|xk−xj |≤Al

Rj,nI

(
2πxk
L

)
Lwl(xk, xj; J)Wk(xj)

+
2L

nI

∑

|xk−xj |≤A

Lwr(xk, xj; J)Wk(xj)

]−−→
ϕper
h = −2U inc(xk, f(xk)))e

−iαxk ,

for k = 1, . . . , nI .

Transmission problem

As it has been described in Section 4.4.3, the system of integral equations used to solve
the transmission problem using a combination of single- and double-layer formulations is

ϕper(x)+

∫ L/2

−L/2

[(
∂Gq

J−

∂νx′
(x− x′, f(x)− f(x′))−∂G

q
J+

∂νx′
(x− x′, f(x)− f(x′))

)
ϕper(x′)γ(x, x′)

]

×
√

1 + f ′(x′)2dx′ +

∫ L/2

−L/2

[(
Gq
J+(x− x′, f(x)− f(x′))−Gq

J−(x− x′, f(x)− f(x′))
)

×φper(x′)γ(x, x′)]
√

1 + f ′(x′)2dx′ = U inc(x, f(x))e−iαx, (4.93)

φper(x) +

∫ L/2

−L/2

[(
∂2Gq

J−

∂νx∂νx′
(x− x′, f(x)− f(x′))− ∂2Gq

J+

∂νx∂νx′
(x− x′, f(x)− f(x′))

)
ϕper(x′)

×γ(x, x′)]
√

1 + f ′(x′)2dx′ +

∫ L/2

−L/2

[
φper(x′)γ(x, x′)

(
∂Gq

J+

∂νx
(x− x′, f(x)− f(x′))

−∂G
q
J−

∂νx
(x− x′, f(x)− f(x′))

)]√
1 + f ′(x′)2dx′ =

∂U inc

∂νx
(x, f(x))e−iαx, (4.94)

with x ∈ [−L/2, L/2], and considering (4.17), (4.26), (4.55), and (4.61), the integral equa-
tions (4.93) and (4.94) result
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ϕper(x) +

∫ x+A

x−A

[
(Lwl−(x, x′; J)− Lwl+(x, x′; J)) ln

(
4 sin2

(π
L

(x− x′)
))

+ (Lwr−(x, x′; J)− Lwr+(x, x′; J))]ϕper(x′)
√

1 + f ′(x′)2dx′

+

∫ x+A

x−A

[
(Mwl+(x, x′; J)−Mwl−(x, x′; J)) ln

(
4 sin2

(π
L

(x− x′)
))

+ (Mwr+(x, x′; J)−Mwr−(x, x′; J))]φper(x′)
√

1 + f ′(x′)2dx′

= U inc(x, f(x))e−iαx, with x ∈ [−L/2, L/2], (4.95)

φper(x) +

∫ x+A

x−A

[
Kwl(x, x

′; J) ln
(

4 sin2
(π
L

(x− x′)
))

+Kwr(x, x
′; J)

]
ϕper(x′)

√
1 + f ′(x′)2dx′

+

∫ x+A

x−A

[
(Hwl+(x, x′; J)−Hwl−(x, x′; J)) ln

(
4 sin2

(π
L

(x− x′)
))

+ (Hwr+(x, x′; J)−Hwr−(x, x′; J))]φper(x′)
√

1 + f ′(x′)2dx′

=
∂U inc

∂νx
(x, f(x))e−iαx, with x ∈ [−L/2, L/2]. (4.96)

Let Vh = {φ ∈ Cper([−L/2, L/2]) : φ|[xk,xk+1] ∈ P1}. The functional space Cper([−L/2, L/2])

can be replaced by the discrete space Vh. Then, the approximation of Equations (4.95)
and (4.96) is defined by:

ϕper
h (x) +

∫ x+A

x−A

[
(Lwl−(x, x′; J)− Lwl+(x, x′; J)) ln

(
4 sin2

(π
L

(x− x′)
))

+ (Lwr−(x, x′; J)− Lwr+(x, x′; J))]ϕper
h (x′)

√
1 + f ′(x′)2dx′

+

∫ x+A

x−A

[
(Mwl+(x, x′; J)−Mwl−(x, x′; J)) ln

(
4 sin2

(π
L

(x− x′)
))

+ (Mwr+(x, x′; J)−Mwr−(x, x′; J))]φper
h (x′)

√
1 + f ′(x′)2dx′

= U inc(x, f(x))e−iαx, with x ∈ [−L/2, L/2], (4.97)

φper
h (x)+

∫ x+A

x−A

[
Kwl(x, x

′; J) ln
(

4 sin2
(π
L

(x− x′)
))

+Kwr(x, x
′; J)

]
ϕper
h (x′)

√
1 + f ′(x′)2dx′

+

∫ x+A

x−A

[
(Hwl+(x, x′; J)−Hwl−(x, x′; J)) ln

(
4 sin2

(π
L

(x− x′)
))

+ (Hwr+(x, x′; J)−Hwr−(x, x′; J))]φper
h (x′)

√
1 + f ′(x′)2dx′

=
∂U inc

∂νx
(x, f(x))e−iαx, with x ∈ [−L/2, L/2], (4.98)
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with ϕper
h , φper

h ∈ (Vh × Vh). Let
−−→
ϕper
h be the column vector of coefficients of ϕper in the

basis associated with Vh, ϕ
per
h (x) =

nI∑

k=1

[
−−→
ϕper
h ]kWk(x) and

−−→
φper
h be the column vector of

coefficients of φper in the basis associated with Vh, φ
per
h (x) =

nI∑

k=1

[
−−→
φper
h ]kWk(x). Then, the

matrix formulation of the problem formed by Equations (4.97) and (4.98) is

(
I +

(
AL AM

AK AH

))(−−→
ϕper
h−−→
φper
h

)
=

(
B
C

)
,

where I is the identity matrix of size 2nI , and the coefficients of the matrices AL, AM, AH,
AK, and the vectors B and C are given by

[AL]k =

∫ x+A

x−A

[
(Lwl−(xk, x

′; J)− Lwl+(xk, x
′; J)) ln

(
4 sin2

(π
L

(xk − x′)
))

+ (Lwr−(xk, x
′; J)− Lwr+(xk, x

′; J))]Wk(x
′)
√

1 + f ′(x′)2dx′,

[AM]k =

∫ x+A

x−A

[
(Mwl+(xk, x

′; J)−Mwl−(xk, x
′; J)) ln

(
4 sin2

(π
L

(xk − x′)
))

+ (Mwr+(xk, x
′; J)−Mwr−(xk, x

′; J))]Wk(x
′)
√

1 + f ′(x′)2dx′,

[AK]k =

∫ x+A

x−A

[
Kwl(xk, x

′; J) ln
(

4 sin2
(π
L

(xk − x′)
))

+Kwr(xk, x
′; J)

]
Wk(x

′)

×
√

1 + f ′(x′)2dx′,

[AH]k =

∫ x+A

x−A

[
(Hwl+(xk, x

′; J)−Hwl−(xk, x
′; J)) ln

(
4 sin2

(π
L

(xk − x′)
))

+ (Hwr+(xk, x
′; J)−Hwr−(xk, x

′; J))]Wk(x
′)
√

1 + f ′(x′)2dx′,

[B]k = U inc(xk, f(xk))e
−iαxk ,

[C]k =
∂U inc

∂νx
(xk, f(xk))e

−iαxk ,

for k = 1, . . . , nI . Now, choosing the discretization points (4.70), and applying the quadra-
ture rule (4.71) to the integrals which have the logarithmic part (the integrals which in-
volve Lwl+, Lwl−, Mwl+, Mwl−, Kwl, Hwl+, and Hwl−), and the quadrature rule (4.72) to
the smooth integrals (those integrals which involve Lwr+, Lwr−, Mwr+, Mwr−, Kwr, Hwr+,
and Hwr−), the integral equations (4.95) and (4.96) can be replaced by the approximated
equations
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[
Wk(xk) +

L

π

∑

|xk−xj |≤Al

Rj,nI

(
2πxk
L

)
(Lwl−(xk, xj; J)− Lwl+(xk, xj; J))Wk(xj)

+
2L

nI

∑

|xk−xj |≤A

(Lwr−(xk, xj; J)− Lwr+(xk, xj; J))Wk(xj)

]−−→
ϕper
h

+

[
L

π

∑

|xk−xj |≤Al

Rj,nI

(
2πxk
L

)
(Mwl+(xk, xj; J)−Mwl−(xk, xj; J))Wk(xj)

+
2L

nI

∑

|xk−xj |≤A

(Mwr+(xk, xj; J)−Mwr−(xk, xj; J))Wk(xj)

]−−→
φper
h

= U inc(xk, f(xk))e
−iαxk , for k = 1, . . . , nI ,

[
L

π

∑

|xk−xj |≤Al

Rj,nI

(
2πxk
L

)
Kwl(xk, xj; J)Wk(xj) +

2L

nI

∑

|xk−xj |≤A

Kwr(xk, xj; J)Wk(xj)

]−−→
ϕper
h

+

[
Wk(xk) +

L

π

∑

|xk−xj |≤Al

Rj,nI

(
2πxk
L

)
(Hwl+(xk, xj; J)−Hwl−(xk, xj; J))Wk(xj)

+
2L

nI

∑

|xk−xj |≤A

(Hwr+(xk, xj; J)−Hwr−(xk, xj; J))Wk(xj)

]−−→
φper
h

=
∂U inc

∂νx
(xk, f(xk))e

−iαxk , for k = 1, . . . , nI .

4.6 Numerical results

In this section, numerical results are presented to illustrate the fast convergence of the
proposed method in two different problems: the wave scattering problem by a sound-soft
periodic surface considering a single-layer, and also a double-layer representation, and the
wave propagation between two periodic media in contact. Two different test are performed
in each problem. In the first test, the convergence order of the method is analyzed with
respect to the size of the window considered, and with respect to the number of points per
period. In the second one, the efficiencies en of the propagative modes are computed using
different number of shifts J .

To obtain the numerical results, the linear systems described in the previous section has
been solved by using the iterative solver GMRES [159]. The method is restarted every 50
inner iterations, with a tolerance of 10−12, and with the LU factorization as preconditioner.

The periodic coupling interface considered is the sinusoidal grating parametrized by the
equation (4.99) (see Figure 4.6), with L = 2π.

y =
L

2
cos

(
2πx

L

)
. (4.99)
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Figure 4.6: Sinusoidal grating (4.99) with L = 2π, used in the numerical simulations

The efficiencies en in the scattering problem by a periodic sound-soft boundary have
been computed by using (4.73), and the error is given by

ε =

∣∣∣∣∣1−
∑

n∈Λ

en

∣∣∣∣∣,

following the energy balance criterion (4.74). The efficiencies e±n in the transmission problem
have been computed by using (4.79), and following the energy balance criterion (4.80), the
error is computed by

ε =

∣∣∣∣∣∣
1−

∑

n∈Λ+

e+
n −

∑

n∈Λ−

e−n

∣∣∣∣∣∣
.

4.6.1 Numerical results for the scattering problem by a sound-
soft boundary with a single-layer formulation

In this section, the problem under consideration is the scattering problem by a sound-soft
boundary with a single-layer formulation introduced in Section 4.2. The periodic sinusoidal
grating used is (4.99) with period L = 2π, and the incident angle of the plane wave is
θ = π/4. In order to illustrate the convergence of the numerical solution of each problem,
the energy balance criterion (4.74) has been used. The efficiencies of the propagative modes
have been computed by using (4.73), and to compute the Rayleigh coefficients in the single-
layer formulation, Equation (4.76) has been considered.

Efficiencies considering a sinusoidal grating

In this section, the efficiencies en have been computed using different number of shifts
J . Tables 4.1 and 4.2 show the energy balance error for a small wave number, k = 1.5, and
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for a large wave number, k = 8.5, respectively, considering a number of points per period
nI , and a window size 2A. The value of the shift distance considered when J 6= 0 is h = 2.5
for the small wave number, and h = 5 for the large one, and the parameters of the windows
are c = 0.1, Al = L/4, and dl = 0.2. As it can be observed, a smaller error is achieved
increasing the number of points per period, and the window size.

J
nI = 128 nI = 256 nI = 512 nI = 1024
A = 400 A = 800 A = 1600 A = 3200

0 2.271× 10−7 1.937× 10−10 3.312× 10−12 7.048× 10−11

1 2.519× 10−6 3.102× 10−7 3.876× 10−8 4.772× 10−9

2 1.083× 10−5 1.354× 10−6 1.692× 10−7 2.107× 10−8

3 3.329× 10−5 4.164× 10−6 5.204× 10−7 6.496× 10−8

4 7.630× 10−5 9.540× 10−6 1.192× 10−6 1.489× 10−7

Table 4.1: Energy balance error (following (4.74)) in the scattering problem with a single-
layer formulation for a small wave number, k = 1.5. Solutions are computed using nI
number of points per period, and the window size is 2A. The value of shift considered when
J > 0, is h = 2.5, and the parameters for the windows are c = 0.1, Al = L/4, and dl = 0.2.

J
nI = 128 nI = 256 nI = 512 nI = 1024
A = 400 A = 800 A = 1600 A = 3200

0 8.111× 10−6 1.041× 10−7 1.537× 10−9 4.377× 10−11

1 9.104× 10−4 1.071× 10−4 1.326× 10−5 1.655× 10−6

2 2.165× 10−2 2.097× 10−3 2.509× 10−4 3.108× 10−5

3 5.576× 10−2 2.340× 10−3 2.148× 10−4 2.544× 10−5

4 2.099× 10−1 3.692× 10−2 7.178× 10−3 9.437× 10−4

Table 4.2: Energy balance error (following (4.74)) in the scattering problem with a single-
layer formulation for k = 8.5. The number of points per period, and the window size used
are nI and 2A, respectively. The value of shift considered when J > 0, is h = 5, and the
parameters for the windows are c = 0.1, Al = L/4, and dl = 0.2.

Since in the previous simulations, the chosen wave number is not a Wood anomaly, now,
the error for kw = 2π

L(1−sin(π/4))
≈ 3.414, which is a Wood anomaly, is computed. Table 4.3

shows the error for different values of the shift J , to illustrate that the error is larger when
the wave number is approached to the Wood anomaly.

Convergence analysis considering a sinusoidal grating

In this section, some numerical results are shown to illustrate the convergence of the
method introduced in Section 4.2. Tables 4.4 and 4.5 show the computed energy balance
error for a small wave number, k = 1.5, by using J = 0 and J = 2, respectively, by
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j = 0 j = 1 j = 2 j = 6 j = 8

kw − 100 2.456× 10−8 1.590× 10−8 4.957× 10−7 4.201× 10−5 3.023× 10−4

kw − 10−1 1.182× 10−5 5.306× 10−6 2.423× 10−6 1.049× 10−5 1.052× 10−4

kw − 10−2 1.520× 10−3 1.475× 10−3 6.483× 10−5 2.508× 10−3 1.235× 10−2

kw − 10−3 1.299× 10−2 1.046× 10−2 6.671× 10−3 5.655× 10−2 9.110× 10−2

kw − 10−4 1.511× 10−2 1.269× 10−2 1.265× 10−2 5.530× 10−2 9.153× 10−2

Table 4.3: Energy balance error in the scattering problem with a single-layer formulation
for wave numbers closed to the Wood anomaly kw = 2π

L(1−sin(π/4))
≈ 3.414. The value of shift

when J > 0 is h = 2.5, the number of points per period is nI = 1024, and the parameters
for the windows are A = 1600, c = 0.1, Al = L/4, and dl = 0.2.

using a number of points per period nI , and a window size 2A. The value of the shift
distance considered when J = 2 is h = 2.5, and the parameters of the windows are c = 0.1,
Al = L/4, and dl = 0.2. As it has been defined in Theorem 4.2.3, the method converges
superalgebraically fast as the truncation radius A tends to infinity.

nI A = 200 A = 400 A = 800 A = 1600

32 3.978× 10−5 3.258× 10−7 5.534× 10−7 5.536× 10−7

64 3.923× 10−5 2.193× 10−7 7.804× 10−9 8.001× 10−9

128 3.922× 10−5 2.271× 10−7 7.837× 10−11 1.251× 10−10

256 3.922× 10−5 2.272× 10−7 1.937× 10−10 5.241× 10−12

512 3.922× 10−5 2.272× 10−7 1.955× 10−10 3.312× 10−12

Table 4.4: Energy balance error (following (4.74)) in the scattering problem with a single-
layer formulation for a small wave number, k = 1.5. Solutions are computed using nI
number of points per period, and the window size is 2A. None shifts are considered, that
is, J = 0, and the parameters for the windows are c = 0.1, Al = L/4, and dl = 0.2.

nI A = 200 A = 400 A = 800 A = 1600

32 4.911× 10−5 6.405× 10−5 6.406× 10−5 6.406× 10−5

64 3.731× 10−6 1.114× 10−5 1.114× 10−5 1.114× 10−5

128 1.358× 10−5 1.278× 10−6 1.280× 10−6 1.280× 10−6

256 1.472× 10−5 1.423× 10−7 1.437× 10−7 1.438× 10−7

512 1.485× 10−5 8.495× 10−9 9.891× 10−9 9.912× 10−9

Table 4.5: Energy balance error (following (4.74)) in the scattering problem with a single-
layer formulation for a small wave number, k = 1.5. Solutions are computed using nI
number of points per period, and the window size is 2A. The value of the shift distance is
h = 2.5, the number of shifts is J = 2, and the parameters for the windows are c = 0.1,
Al = L/4, and dl = 0.2.
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Tables 4.6 and 4.7 show the computed energy balance error for a large wave number,
k = 8.5, by using J = 0 and J = 2, respectively, by using a number of points per period nI ,
and a window size 2A. The value of the shift distance considered when J = 2 is h = 5, and
the parameters of the windows are c = 0.1, Al = L/4, and dl = 0.2. As it can be observed,
to increase the number of points per period is more important when k is large, and to
increase the window size is more important when k is small to achieve a fast convergence.

nI A = 200 A = 400 A = 800 A = 1600

64 7.690× 10−3 7.693× 10−3 7.693× 10−3 7.693× 10−3

128 3.598× 10−6 8.111× 10−6 8.375× 10−6 8.375× 10−6

256 4.525× 10−6 1.597× 10−7 1.041× 10−7 1.041× 10−7

512 4.611× 10−6 2.622× 10−7 1.537× 10−9 1.548× 10−9

1024 4.611× 10−6 2.638× 10−7 1.525× 10−11 2.697× 10−11

Table 4.6: Energy balance error (following (4.74)) in the scattering problem with a single-
layer formulation for a large wave number, k = 8.5. Solutions are computed using nI
number of points per period, and the window size is 2A. None shifts are considered, that
is, J = 0, and the parameters for the windows are c = 0.1, Al = L/4, and dl = 0.2.

nI A = 200 A = 400 A = 800 A = 1600

64 1.247× 10−1 1.232× 10−1 1.232× 10−1 1.232× 10−1

128 2.266× 10−2 2.165× 10−2 2.165× 10−2 2.165× 10−2

256 2.931× 10−3 2.098× 10−3 2.097× 10−3 2.097× 10−3

512 1.068× 10−3 2.519× 10−4 2.511× 10−4 2.511× 10−4

1024 8.455× 10−4 3.201× 10−5 3.117× 10−5 3.117× 10−5

Table 4.7: Energy balance error (following (4.74)) in the scattering problem with a single-
layer formulation for k = 8.5. Solutions are computed using nI number of points per period,
and the window size is 2A. The value of the shift distance is h = 5, the number of shifts is
J = 2, and the parameters for the windows are c = 0.1, Al = L/4, and dl = 0.2.

4.6.2 Numerical results for the scattering problem by a sound-
soft boundary with a double-layer formulation

In this section, the scattering problem by a sound-soft boundary with a double-layer
formulation introduced in Section 4.3 is considered. The periodic sinusoidal grating used
is (4.99) with period L = 2π, and the incident angle of the plane wave is θ = π/4. As
in single-layer simulations, to illustrate the convergence of the numerical solution of the
problem, the energy balance criterion (4.74) has been used, and the efficiencies of the
propagative modes have been computed by using (4.73), where the Rayleigh coefficients in
the double-layer formulation are obtained by using Equation (4.76).
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Efficiencies sinusoidal grating

In this section, the efficiencies en have been computed using different number of shifts
J . Tables 4.8 and 4.9 show the energy balance error for a small wave number, k = 1.5, and
for a large wave number, k = 8.5, respectively, considering a number of points per period
nI , and a window size 2A. The value of the shift distance considered when J 6= 0 is h = 2.5
for the small wave number, and h = 5 for the large one, and the parameters of the windows
are c = 0.1, Al = L/4, and dl = 0.2. As it can be observed, a smaller error is achieved
increasing the number of points per period, and the window size.

J
nI = 128 nI = 256 nI = 512 nI = 1024
A = 400 A = 800 A = 1600 A = 3200

0 3.695× 10−7 2.389× 10−10 1.377× 10−11 7.075× 10−11

1 2.298× 10−8 2.298× 10−10 9.773× 10−12 7.070× 10−11

2 1.122× 10−7 2.350× 10−10 3.545× 10−12 7.099× 10−11

3 2.932× 10−7 1.100× 10−9 3.110× 10−11 7.146× 10−11

4 6.002× 10−7 2.647× 10−9 7.994× 10−11 7.201× 10−11

Table 4.8: Energy balance error (following (4.74)) in the scattering problem with a double-
layer formulation for a small wave number, k = 1.5. Solutions are computed by using nI
number of points per period, and the window size is 2A. The value of shift considered,
when J > 0 is h = 2.5, and the parameters for the windows are c = 0.1, Al = L/4, and
dl = 0.2.

J
nI = 128 nI = 256 nI = 512 nI = 1024
A = 400 A = 800 A = 1600 A = 3200

0 7.071× 10−6 1.816× 10−7 5.444× 10−9 2.396× 10−10

1 5.860× 10−6 1.565× 10−7 4.703× 10−9 2.175× 10−10

2 1.189× 10−5 3.693× 10−7 1.113× 10−8 4.064× 10−10

3 1.088× 10−5 3.312× 10−6 9.948× 10−8 3.098× 10−9

4 5.702× 10−3 1.370× 10−6 4.160× 10−8 1.295× 10−9

Table 4.9: Energy balance error (following (4.74)) in the scattering problem with a double-
layer formulation for a large wave number, k = 8.5. Solutions are computed using nI
number of points per period, and the window size is 2A. The value of shift considered,
when J > 0 is h = 5, and the parameters for the windows are c = 0.1, Al = L/4, and
dl = 0.2.

In the previous simulations, the chosen wave number is not a Wood anomaly. Now, the
error for kw = 2π

L(1−sin(π/4))
≈ 3.414, which is a Wood anomaly, is computed. Table 4.10

shows the error for different values of the shift J , to illustrate that the error is larger when
the wave number is approached to the Wood anomaly.



4.6. Numerical results 177

j = 0 j = 1 j = 2 j = 5 j = 7

kw − 100 6.019× 10−8 4.813× 10−10 1.041× 10−9 2.667× 10−9 1.130× 10−8

kw − 10−1 3.614× 10−5 3.848× 10−6 8.031× 10−8 5.861× 10−7 4.765× 10−6

kw − 10−2 1.117× 10−3 2.540× 10−3 2.889× 10−3 5.226× 10−3 3.751× 10−2

kw − 10−3 1.658× 10−2 7.415× 10−3 2.087× 10−3 2.892× 10−2 5.233× 10−2

kw − 10−4 2.002× 10−2 1.114× 10−2 9.436× 10−3 3.263× 10−2 4.973× 10−2

Table 4.10: Energy balance error in the scattering problem with a double-layer formulation
for wave numbers closed to the Wood anomaly kw = 2π

L(1−sin(π/4))
≈ 3.414. The value of shift

when J > 0 is h = 1.5, the number of points per period is nI = 1024, and the parameters
for the windows are A = 1600, c = 0.1, Al = L/4, and dl = 0.2.

Convergence analysis considering a sinusoidal grating

In this section, to illustrate the convergence of the method introduced in Section 4.3,
numerical results are shown. Tables 4.11 and 4.12 show the computed energy balance error
for k = 1.5, with J = 0 and J = 2, respectively, using nI number of points per period, and
a window size 2A. The shift distance when J = 2 is h = 1.5, and the window parameters
are c = 0.1, Al = L/4, and dl = 0.2. Following Theorem 4.2.3, the method converges
superalgebraically fast as the truncation radius A tends to infinity.

nI A = 200 A = 400 A = 800 A = 1600

32 1.105× 10−5 1.519× 10−6 1.900× 10−6 1.900× 10−6

64 1.273× 10−5 1.679× 10−7 2.129× 10−7 2.134× 10−7

128 1.294× 10−5 3.695× 10−7 1.135× 10−8 1.193× 10−8

256 1.295× 10−5 3.811× 10−7 2.389× 10−10 3.372× 10−10

512 1.295× 10−5 3.814× 10−7 5.622× 10−10 1.377× 10−11

Table 4.11: Energy balance error (following (4.74)) in the scattering problem with a double-
layer formulation for a small wave number, k = 1.5. Solutions are computed using nI
number of points per period, and the window size is 2A. None shifts are considered, that
is, J = 0, and the parameters for the windows are c = 0.1, Al = L/4, and dl = 0.2.

nI A = 200 A = 400 A = 800 A = 1600

32 3.435× 10−4 3.443× 10−4 3.443× 10−4 3.443× 10−4

64 5.965× 10−7 2.071× 10−7 2.303× 10−7 2.303× 10−7

128 8.282× 10−7 2.467× 10−8 1.445× 10−9 1.417× 10−9

256 8.269× 10−7 2.331× 10−8 8.007× 10−11 5.610× 10−11

512 8.268× 10−7 2.325× 10−8 2.251× 10−11 1.454× 10−12

Table 4.12: Energy balance error (following (4.74)) in the scattering problem with a double-
layer formulation for a small wave number, k = 1.5. Solutions are computed using nI
number of points per period, and the window size is 2A. The value of shift is h = 2.5 and
J = 2, and the parameters for the windows are c = 0.1, Al = L/4, and dl = 0.2.
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Tables 4.13 and 4.14 show the computed energy balance error for a large wave number,
k = 8.5, by using J = 0 and J = 2, respectively, by using a number of points per period nI
and a window size 2A. The value of the shift distance considered when J = 2 is h = 5, and
the parameters of the windows are c = 0.1, Al = L/4, and dl = 0.2. As it can be observed,
the method possesses superalgebraically convergence as the truncation radius A tends to
infinity.

nI A = 200 A = 400 A = 800 A = 1600

64 2.213× 10−3 2.211× 10−3 2.211× 10−3 2.211× 10−3

128 4.927× 10−6 7.071× 10−6 6.945× 10−6 6.945× 10−6

256 1.837× 10−6 3.081× 10−7 1.816× 10−7 1.818× 10−7

512 2.013× 10−6 1.318× 10−7 5.282× 10−9 5.443× 10−9

1024 2.019× 10−6 1.265× 10−7 3.298× 10−10 1.655× 10−10

Table 4.13: Energy balance error (following (4.74)) in the scattering problem with a double-
layer formulation for a large wave number, k = 8.5. Solutions are computed using nI number
of points per period, and the window size is 2A. None shifts are considered, that is, J = 0,
and the parameters for the windows are c = 0.1, Al = L/4, and dl = 0.2.

nI A = 200 A = 400 A = 800 A = 1600

64 2.120× 10−3 5.199× 10−3 5.201× 10−3 5.201× 10−3

128 2.963× 10−3 1.189× 10−5 1.378× 10−5 1.378× 10−5

256 2.977× 10−3 1.524× 10−6 3.693× 10−7 3.692× 10−7

512 2.977× 10−3 1.882× 10−6 1.123× 10−8 1.113× 10−8

1024 2.977× 10−3 1.893× 10−6 4.437× 10−10 3.417× 10−10

Table 4.14: Energy balance error (following (4.74)) in the scattering problem with a double-
layer formulation for a large wave number, k = 8.5. Solutions are computed using nI number
of points per period, and the window size is 2A. The value of shift is h = 5 and J = 2, and
the parameters for the windows are c = 0.1, Al = L/4, and dl = 0.2.

4.6.3 Numerical results for the transmission problem

In this section, some numerical results are shown to illustrate the efficiency of the
method. First of all, some validation test have been performed. Considering a plane
interface between the media, the solution of the proposed method has been compared with
the exact solution. When a sinusoidal grating is considered, since an exact solution can
not be computed, the solution has been compared with the solution obtained by using the
Finite Element Method (FEM). Once the code has been validated, a convergence analysis
of the proposed method is shown.

Validation code with a planar interface

In this section, the code has been validated considering a planar interface. If the incident
wave is a plane wave with an oblique incidence angle, it is possible to compute the scattered
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wave and the transmitted wave analytically. In all these simulations, the planar interface
y = 0 is considered, and it is supposed that the incidence angle of the plane wave is
θ+ = π/4. The parameters to perform the simulations are nI = 256, A = 400, c = 0.1,
Al = L/4, and dl = 0.2.

Figure 4.7: Relative error for the solution ϕq (left plot), and for the solution φq (right plot).
In both cases, errors are computed comparing with the exact solution in the propagation
domain Ω+ (solid blue line), and comparing with the exact solution in the propagation
domain Ω− (dotted red line), considering a planar interface, and an incident plane wave
with an incidence angle θ+ = π/4. The values of the wave numbers are k+ = k− = 1.5.

Figure 4.8: Relative error for the solution ϕq (left plot), and for the solution φq (right plot).
In both cases, errors are computed comparing with the exact solution in the propagation
domain Ω+ (solid blue line), and comparing with the exact solution in the propagation
domain Ω− (dotted red line), considering a planar interface, and an incident plane wave
with an incidence angle θ+ = π/4. The wave numbers are k+ = 1.5, and k− = 2.5.

As it is well-known, the solutions of the system (4.47), ϕq and φq, can be computed as
ϕq = U+|Γ# = U−|Γ# and φq = ∂U+

∂νx
|Γ# = ∂U−

∂νx
|Γ# . Figures 4.7, 4.8, and 4.9 show the relative

error in the solution of the system (4.47) comparing with the analytic exact solution when
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Figure 4.9: Relative error for the solution ϕq (left plot), and for the solution φq (right plot).
In both cases, errors are computed comparing with the exact solution in the propagation
domain Ω+ (solid blue line), and comparing with the exact solution in the propagation
domain Ω− (dotted red line), considering a planar interface, and an incident plane wave
with an incidence angle θ+ = π/4. The wave numbers are k+ = 2.5, and k− = 1.5.

(a) Real part of the total field (b) Imaginary part of the total field

Figure 4.10: Real and imaginary part of the total field. Left: Exact solution. Right:
Solution computed by using the integral equation method described in Section 4.4.3. The
wave numbers are k+ = k− = 1.5.

k+ = k−, k+ < k−, and k+ > k−, respectively. As it can be observed, in the worst case,
the relative errors in the solution of the system are less than 10−7.

Figures 4.10, 4.11, and 4.12 show the comparison between the integral equation method
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(a) Real part of the total field (b) Imaginary part of the total field

Figure 4.11: Real and imaginary part of the total field. Left: Exact solution. Right:
Solution computed by using the integral equation method described in Section 4.4.3. The
wave numbers are k+ = 1.5 and k− = 2.5.

(a) Real part of the total field (b) Imaginary part of the total field

Figure 4.12: Real and imaginary part of the total field. Left: Exact solution. Right:
Solution computed by using the integral equation method described in Section 4.4.3. The
wave numbers are k+ = 2.5 and k− = 1.5.
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(a) Real part of the absolute error (b) Imaginary part of the absolute error

(c) Absolute value of the absolute error

Figure 4.13: Subplots (a), (b) and (c) are real, imaginary part, and absolute value of the
absolute error. Left: solution computed with FEM. Right: solution computed with the
integral equation method described in Section 4.4.3. The wave numbers are k+ = k− = 1.5.

described in this chapter and the exact solution, when k+ = k−, k+ < k−, and k+ >
k−, respectively. The shown values are the real (subplot (a)), and the imaginary part
(subplot (b)) of the scattered field in Ω#

+, and the transmitted field in Ω#
−. When the
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(a) Real part of the error (b) Imaginary part of the error

(c) Absolute value of the absolute error

Figure 4.14: Subplots (a), (b) and (c) are real, imaginary part, and absolute value of the
absolute error. Left: solution computed with FEM. Right: solution computed with the
integral equation method described in Section 4.4.3. The wave numbers are k+ = 1.5, and
k− = 2.5.

solution is computed by using the integral equation method described in Section 4.4.3,
following (4.38) and (4.40), the solution can be computed in the interval (−∞, h)∪ (H,∞)
where H = max

x∈[−L2 ,
L
2 ]
f(x), and h = min

x∈[−L2 ,
L
2 ]
f(x). The infinite sums (4.38) and (4.40) are
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(a) Real part of the error (b) Imaginary part of the error

(c) Absolute value of the absolute error

Figure 4.15: Subplots (a), (b) and (c) are real, imaginary part, and absolute value of the
absolute error. Left: solution computed with FEM. Right: solution computed with the
integral equation method described in Section 4.4.3. The wave numbers are k+ = 2.5, and
k− = 1.5.

computed by using a truncated series with 41 terms. These figures show a good agreement
between the computed solution by using the proposed method, and the exact solution.

In order to illustrate the committed error, the real, the imaginary part, and the absolute
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value of the absolute error are plotted. Moreover, to show the advantages of the method,
the error has been compared with the committed error when the solution is computed by
using the Finite Element Method (FEM). The reader is referred to Appendix 4.C to get
a complete description of how the problem has been solved by using FEM and Perfectly
Matched Layers (PML). The plane grating y = 0 is considered and it is supposed that
the incidence angle of the plane wave is θ+ = π/4. Figure 4.13 shows the real (subplot
(a)), the imaginary part (subplot (b)), and the absolute value (subplot (c)) of the absolute
error between the computed solution by using the integral equation method described in
Section 4.4.3 (right plots), and the FEM (left plots), for k+ = k− = 1.5. As it can be
observed, the error with the integral equation method is around 10−12 while the error with
FEM is 10−3.

Figure 4.14 shows the real (subplot (a)), the imaginary part (subplot (b)), and the
absolute value (subplot (c)) of the absolute error between the computed solution by using
the integral equation method described in Section 4.4.3 (right plots), and the FEM (left
plots), for k+ = 1.5, and k− = 2.5. As in the previous case, the error with the integral
equation method is smaller than with FEM (around 10−9 with the integral method, and
around 10−2 with FEM).

Figure 4.15 shows the real (subplot (a)), the imaginary part (subplot (b)), and the
absolute values (subplot (c)) of the absolute error between the computed solution by using
the integral equation method described in Section 4.4.3 (right plots), and the FEM (left
plots), for k+ = 2.5, and k− = 1.5. As in previous cases, the error with the integral equation
method is smaller than with FEM (around 10−8 with the integral method, and around 10−2

with FEM).

Validation code considering a sinusoidal grating

In this section, a code validation has been performed considering a sinusoidal grating.
Since it is not possible to compute the exact solution, the results with the proposed method
are compared with the solution obtained with a FEM, and using PML (see Appendix 4.C
for more details). In the simulations, the sinusoidal grating considered is given by (4.99)
with L = 2π, and it is supposed that the incidence angle of the plane wave is θ+ = π/4.
The parameters to perform the simulations are nI = 256, A = 400, c = 0.1, Al = L/4, and
dl = 0.2.

Figures 4.16, 4.17, and 4.18 show the comparison between the integral equation method
described in this chapter and the FEM, when k+ = k−, k+ < k−, and k+ > k−, respectively.
Following (4.38) and (4.40), the solution can be computed in the interval (−∞, h)∪ (H,∞)
where H = max

x∈[−L2 ,
L
2 ]
f(x), and h = min

x∈[−L2 ,
L
2 ]
f(x). The infinite sums (4.38) and (4.40) are

computed by using a truncated series with 41 terms.
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(a) Real part of the total field (b) Imaginary part of the total field

Figure 4.16: Real (subplot (a)) and imaginary part (subplot (b)) of the total field. Left:
Solution computed by using FEM and PML. Right: Solution computed by using the integral
equation method described in Section 4.4.3, where the series (4.38) and (4.40) are truncated
to 41 terms. The wave numbers are k+ = k− = 1.5.

Convergence analysis considering a sinusoidal grating

To illustrate the convergence of the method introduced in Section 4.4, some numerical
results are shown. The problem under consideration is the transmission problem by the
periodic sinusoidal grating (4.99) with period L = 2π, and the incident angle is θ+ = π/4.
Tables 4.15, 4.16, and 4.17 show the computed energy balance error for k+ = k−, k+ < k−,
and k+ > k−, respectively, by using J = 0, a number of points per period nI , and a window
size 2A. The parameters of the windows are c = 0.1, Al = L/4, and dl = 0.2.

4.7 Conclusions

In this chapter, a fast convergent integral equation method to solve a transmission
problem is introduced. This method solves the problem of acoustic wave scattering by two
media with a periodic coupling surface. The integral method proposed is based on the use of
quasi-periodic Green functions in combination with a smooth-windowing technique. First of
all, the definition of a slow-rise windowing function has been introduced, showing how this
function can improve the convergence of the classical quasi-periodic Green function. This
function presents convergence problems at and around Wood anomalies. Then, a shifted
quasi-periodic Green function has been described to overcome the convergence problem at
and around Wood anomaly frequencies.
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(a) Real part of the total field (b) Imaginary part of the total field

Figure 4.17: Real (subplot (a)) and imaginary part (subplot (b)) of the total field. Left:
Solution computed by using FEM and PML. Right: Solution computed by using the integral
equation method described in Section 4.4.3, where the series (4.38) and (4.40) are truncated
to 41 terms. The wave numbers are k+ = 1.5, and k− = 2.5.

nI A = 200 A = 400 A = 800 A = 1600

32 8.082× 10−14 2.136× 10−13 2.141× 10−13 9.929× 10−13

64 2.096× 10−13 2.127× 10−13 9.507× 10−13 1.368× 10−12

128 2.092× 10−13 9.475× 10−13 1.370× 10−12 3.260× 10−12

256 9.490× 10−13 1.368× 10−12 3.267× 10−12 3.252× 10−12

512 1.370× 10−12 3.266× 10−12 3.265× 10−12 3.266× 10−12

1024 3.269× 10−12 3.264× 10−12 3.259× 10−12 3.266× 10−12

Table 4.15: Energy balance error (following (4.80)) in the transmission problem for k+ =
k− = 1.5. Solutions are computed using nI number of points per period, and the window
size is 2A. None shifts are considered, that is, J = 0, and the parameters for the windows
are c = 0.1, Al = L/4, and dl = 0.2.

For the sake of completeness, the acoustic wave scattering problem by a sound-soft peri-
odic surface is studied, with a single-, and a double-layer representations. The computation
of the solution of both problems involves the approximation of some integrals with logarith-
mic singularities, which appear due to the definition of the Hankel functions. To achieve a
high-order evaluation of logarithmic integral operators, a modification of the Nyström ap-
proach is used. The most important point to deal with this method is to split each kernel
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(a) Real part of the total field (b) Imaginary part of the total field

Figure 4.18: Real (subplot (a)) and imaginary part (subplot (b)) of the total field. Left:
Solution computed by using FEM and PML. Right: Solution computed by using the integral
equation method described in Section 4.4.3, where the series (4.38) and (4.40) are truncated
to 41 terms. The wave numbers are k+ = 2.5, and k− = 1.5.

nI A = 200 A = 400 A = 800 A = 1600

32 1.097× 10−3 1.093× 10−3 1.092× 10−3 1.092× 10−3

64 1.145× 10−4 1.075× 10−4 1.072× 10−4 1.072× 10−4

128 2.078× 10−5 1.356× 10−5 1.326× 10−5 1.326× 10−5

256 9.210× 10−6 1.958× 10−6 1.655× 10−6 1.654× 10−6

512 7.767× 10−6 5.108× 10−7 2.072× 10−7 2.067× 10−7

1024 7.586× 10−6 3.299× 10−7 2.634× 10−8 2.583× 10−8

Table 4.16: Energy balance error (following (4.80)) in the transmission problem for k+ =
1.5, and k− = 2.5. Solutions are computed using nI number of points per period, and the
window size is 2A. None shifts are considered, that is, J = 0, and the parameters for the
windows are c = 0.1, Al = L/4, and dl = 0.2.

into a smooth kernel, and a logarithmic part. Once the kernel decomposition in the single-
and the double-layer representation has been detailed, the transmission problem has been
studied, emphasizing the kernel decomposition of the adjoint double-layer potential, and
the difference of hypersingular potentials.

Moreover, the discretization of each problem, describing the quadrature rules used to
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nI A = 200 A = 400 A = 800 A = 1600

32 2.363× 10−3 3.689× 10−4 3.279× 10−4 3.280× 10−4

64 2.089× 10−3 8.727× 10−5 4.643× 10−5 4.659× 10−5

128 2.050× 10−3 4.669× 10−5 5.861× 10−6 6.021× 10−6

256 2.044× 10−3 4.142× 10−5 5.976× 10−7 7.579× 10−7

512 2.044× 10−3 4.076× 10−5 6.545× 10−8 9.481× 10−8

1024 2.044× 10−3 4.067× 10−5 1.485× 10−7 1.179× 10−8

Table 4.17: Energy balance error (following (4.80)) in the transmission problem for k+ =
2.5, and k− = 1.5. Solutions are computed using nI number of points per period, and the
window size is 2A. None shifts are considered, that is, J = 0, and the parameters for the
windows are c = 0.1, Al = L/4, and dl = 0.2.

approximate the integrals, is explained. Finally, in order to illustrate the fast convergence
of the method, some numerical results are presented. The code has been validated, taking
into account two different boundaries. If a plane interface between media is considered,
the exact solution can be calculated, and it has been compared with the computed solution
with the proposed integral method. If a sinusoidal grating is considered, since the exact
solution can not be obtained, the computed solution is compared with the approximated
solution calculated by using FEM and PML. In both cases, a good agreement is shown. In
the end, the results of the convergence analysis of the proposed method are given, showing
the fast convergence of the method when the window size is increased.





Appendix

4.A Bessel functions

The solutions to Bessel’s equation are defined as [4, 63, 115]

Jn(t) :=
∞∑
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, n = 0, 1, 2, . . . (4.A.1)

which are known as Bessel functions of order n, and are analytic functions in the complex-
plane (in particular C∞-functions in the real line).
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where
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(4.A.3)

is the Euler’s constant, and

ψ(p) =

p∑

m=1

1

p
, p = 1, 2, . . . , ψ(0) = 0.

The functions (4.A.2) are known as Neumann functions of order n, and they belong to
C∞(0,∞). By using (4.A.1) and (4.A.2), the Hankel functions of first kind of order n are
defined as

H(1)
n (t) := Jn(t) + iYn(t). (4.A.4)

191
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When n = 0, considering the definition (4.A.4), the Hankel function of first kind of order 0

results H
(1)
0 = J0(t) + iY0(t) where
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Then, the Hankel function of order 0 can be written as
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Following the same argument, the Hankel function of order 1 can be written as
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where Σn(t) is given by
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(
t

2

)2p

(ψ(p+ n) + ψ(p)). (4.A.7)

Taking into account (4.A.4), the Hankel function of order 2 is given by

H
(1)
2 (t) = J2(t) + iY2(t) = J2(t) +

2i

π

(
ln
t

2
+ C

)
J2(t)− 4i

πt2

(
1 +

t2

4

)

− it2

4π

∞∑

p=0

(−1)p

p!(2 + p)!

(
t

2

)2p

(ψ(p+ 2) + ψ(p))

= J2(t)

(
1 +

2i

π

(
ln
t

2
+ C

))
− 4i

πt2

(
1 +

t2

4

)
− it2

4π
Σ2(t). (4.A.8)
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Considering the definition (4.A.1)

J0(0) = 1, (4.A.9)

and

lim
t→0

J1(kt)

t
= kJ ′0(0) = −J1(0)k/2 =

k

2
. (4.A.10)

Moreover, the derivative of the Hankel functions are given by

[H
(1)
0 ]′(t) = −H(1)

1 (t), (4.A.11)

[H
(1)
1 ]′(t) = −H(1)

2 (t) +
1

t
H

(1)
1 (t). (4.A.12)

4.B Kernel decomposition in a periodic setting

In this section, the decomposition of kernels associated with a single-layer, a double-
layer, an adjoint double-layer, and a hypersingular potentials is detailed. The goal of this
section is to help further understanding of the decomposition of kernels Mw, Lw, Hw, and
Kw, appearing in Sections 4.2.5, 4.3.1, and 4.4.3.

4.B.1 Single-layer potential

To understand the decomposition of the kernel Mw in Section 4.2.5, a simple single-
layer potential is considered, avoiding the shifting and windowing techniques. The kernel
considered is formed by the half-space Green function GJ given by (4.8) multiplied by the
norm of the normal vector to the boundary, that is,

∫ L/2

−L/2
GJ(x− x′, f(x)− f(x′))

√
1 + f ′(x′)2

︸ ︷︷ ︸
M(x, x′; J)

ϕ(x′)dx′ =

∫ L/2

−L/2
M(x, x′; J)ϕ(x′)dx′,

where ϕ is a continuous density. Then, taking into account the definition of GJ , the kernel
M is given by

M(x, x′; J) = GJ(x− x′, f(x)− f(x′))
√

1 + f ′(x′)2

=
i

4

J∑

l=0

(−1)l
(
J

l

)
H

(1)
0

(
k
√

(x− x′)2 + (f(x)− f(x′) + lh)2
)√

1 + f ′(x′)2.

(4.B.1)

The kernel M presents a logarithmic singularity at x = x′ when l = 0 due to the Bessel
function of the second kind Y0(x) (see the asymptotic behavior of the Hankel function of
order 0 at the origin in (4.A.5)). Then, following Martensen [122] and Kussmaul [108], the
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integral kernel M given by (4.B.1) can be split in a smooth kernel Mr, and a logarithmic
part, that is,

M(x, x′; J) = Ms(x, x
′; J) ln

(
4 sin2

(
x− x′

2

))
+Mr(x, x

′; J),

where

Ms(x, x
′; J) = − 1

4π
J0

(
k
√

(x− x′)2 + (f(x)− f(x′))2
)√

1 + f ′(x′)2,

Mr(x, x
′; J) = M(x, x′; J)−Ms(x, x

′; J) ln

(
4 sin2

(
x− x′

2

))
. (4.B.2)

Remark 4.B.1. The subscript r is used to denote the regular part and s denotes the singular
one.

In order to deal with the singularities appearing in the Bessel functions, it is necessary
to study the behavior of the function M at x = x′ when shifts are not considered (J = 0),
and when they are used (J > 0). If J = 0, using (4.B.1) the kernel M is given by

M(x, x′; 0) =
i

4
H

(1)
0

(
k
√

(x− x′)2 + (f(x)− f(x′))2
)√

1 + f ′(x′)2. (4.B.3)

Then, taking into account (4.B.2), (4.B.3), and the asymptotic expansion of H
(1)
0 around

the origin (see (4.A.5) for more details), the value of the smooth kernel Mr when x = x′

can be computed as

Mr(x, x; 0) = lim
x′→x

Mr(x, x
′; 0) = lim

x′→x

[
M(x, x′; 0)−Ms(x, x

′; 0) ln

(
4 sin2

(
x− x′

2

))]

= lim
x′→x

[
i

4
H

(1)
0

(
k
√

(x− x′)2 + (f(x)− f(x′))2
)

+
1

4π
J0

(
k
√

(x− x′)2 + (f(x)− f(x′))2
)

ln

(
4 sin2

(
x− x′

2

))]√
1 + f ′(x′)2

= lim
x′→x

[
i

4

(
1 +

2iC

π
+

2i

π

(
ln
k
√

(x− x′)2 + (f(x)− f(x′))2

2

))

+
1

4π
ln

(
4 sin2

(
x− x′

2

))]√
1 + f ′(x′)2

= lim
x′→x

[
i

4
− C

2π
− 1

4π
ln

(
k2((x−x′)2+(f(x)−f(x′))2)

4

4 sin2
(
x−x′

2

)
)]
√

1 + f ′(x′)2

=

[
i

4
− C

2π
− 1

2π
ln

(
k

2

√
1 + f ′(x)2

)]√
1 + f ′(x)2, (4.B.4)



4.B. Kernel decomposition in a periodic setting 195

where C is the Euler’s constant given by (4.A.3). On the other hand, when J > 0, the
kernel M is given by (4.B.1). Then, taking into account (4.B.2), the value of the kernel Mr

at x = x′ can be computed as

Mr(x, x; J) = lim
x′→x

Mr(x, x
′; J) = lim

x′→x

[
M(x, x′; J)−Ms(x, x

′; J) ln

(
4 sin2

(
x− x′

2

))]

= lim
x′→x

[
i

4

J∑

l=0

(−1)l
(
J

l

)
H

(1)
0 (k

√
(x− x′)2 + (f(x)− f(x′) + lh)2)

+
1

4π
J0

(
k
√

(x− x′)2 + (f(x)− f(x′))2
)

ln

(
4 sin2

(
x− x′

2

))]

×
√

1 + f ′(x′)2.

Since, the singularities in the Hankel functions appear only when l = 0, the sum is split in
two parts: l = 0 and l > 0. Then, the value of the kernel Mr at x = x′ is given by

Mr(x, x; J) = lim
x′→x

Mr(x, x
′; J) = lim

x′→x

[
i

4
H

(1)
0

(
k
√

(x− x′)2 + (f(x)− f(x′))2
)

+
1

4π
J0

(
k
√

(x− x′)2 + (f(x)− f(x′))2
)

ln

(
4 sin2

(
x− x′

2

))]√
1 + f ′(x′)2

+ lim
x′→x

[
i

4

J∑

l=1

(−1)l
(
J

l

)
H

(1)
0

(
k
√

(x− x′)2+(f(x)− f(x′) + lh)2
)]√

1 + f ′(x′)2

=

[
i

4
− C

2π
− 1

2π
ln

(
k

2

√
1 + f ′(x)2

)
+
i

4

J∑

l=1

(−1)l
(
J

l

)
H

(1)
0 (klh)

]
√

1 + f ′(x)2,

(4.B.5)

where C is the Euler’s constant given by (4.A.3).

4.B.2 Double-layer potential

To understand the decomposition of the kernel Lw in Section 4.3.1, similar arguments
to previous section are followed, but in this case, a double-layer potential is considered.
Once again, to avoid the shifting and windowing techniques, a simple kernel is taking into
account. This kernel is formed by the normal derivative of the half-space Green function
GJ (given by (4.8)), multiplied by the norm of the normal vector to the boundary, that is,

∫ L/2

−L/2

∂GJ

∂νx′
(x− x′, f(x)− f(x′))

√
1 + f ′(x′)2

︸ ︷︷ ︸
L(x, x′; J)

ϕ(x′)dx′ =

∫ L/2

−L/2
L(x, x′; J)ϕ(x′)dx′.
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Taking into account the definition of GJ and the derivative of H
(1)
0 (see (4.A.11)),

L(x, x′; J) =
∂GJ

∂νx′
(x− x′, f(x)− f(x′))

√
1 + f ′(x′)2

=
ik

4

J∑

l=0

[
(−1)l

(
J

l

)
H

(1)
1

(
k
√

(x− x′)2 + (f(x)− f(x′) + lh)2
)

×−f
′(x′)(x− x′) + f(x)− f(x′) + lh√
(x− x′)2 + (f(x)− f(x′) + lh)2

]
. (4.B.6)

Considering the asymptotic expansion of the Hankel function of order 1 at the origin
(see (4.A.6)), the kernel L presents logarithmic singularities at x = x′ when l = 0. Then,
following Martensen [122] and Kussmaul [108], the kernel L (4.B.6) can be split in a smooth
kernel Lr, and a logarithmic part (see Remark 4.B.1 for subscript notation), that is,

L(x, x′; J) = Ls(x, x
′; J) ln

(
4 sin2

(
x− x′

2

))
+ Lr(x, x

′; J),

where

Ls(x, x
′; J) = − k

4π
J1

(
k
√

(x− x′)2 + (f(x)− f(x′))2
) −f ′(x′)(x− x′) + f(x)− f(x′)√

(x− x′)2 + (f(x)− f(x′))2
,

(4.B.7)

Lr(x, x
′; J) = L(x, x′; J)− Ls(x, x

′; J) ln

(
4 sin2

(
x− x′

2

))
. (4.B.8)

In order to deal with the singularities appearing in the Bessel functions around the origin,
it is necessary to analyze the behavior of the kernels Ls and Lr at x = x′. Taking into
account (4.B.7), and the limit of the Bessel function J1(t) at t→ 0 (see (4.A.10)), the value
of Ls at x = x′ can be computed as

Ls(x, x; J) = lim
x′→x

Ls(x, x
′; J) = lim

x′→x
− k

4π
J1

(
k
√

(x− x′)2 + (f(x)− f(x′))2
)

× −f
′(x′)(x− x′) + f(x)− f(x′)√
(x− x′)2 + (f(x)− f(x′))2

= lim
x′→x
− k

2

8π
(−f ′(x′)(x− x′) + f(x)− f(x′)) = 0. (4.B.9)

To analyze the behavior of the kernel Lr when x is equal to x′, it has been considered what
happens when shifts are not used (J = 0), and when shifts are used (J > 0). If J = 0,
using (4.B.6), the function L is given by

L(x, x′; 0) =
ik

4
H

(1)
1

(
k
√

(x− x′)2 + (f(x)− f(x′))2
) −f ′(x′)(x− x′) + f(x)− f(x′)√

(x− x′)2 + (f(x)− f(x′))2
.

(4.B.10)
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Considering the asymptotic expansion of the Hankel functionH
(1)
1 at the origin (see (4.A.6)),

and taking into account (4.B.7), (4.B.8), and (4.B.10), the values of the smooth kernel Lr

at x = x′ can be computed as

Lr(x, x; 0) = lim
x′→x

Lr(x, x
′; 0) = lim

x′→x

[
L(x, x′; 0)− Ls(x, x

′; 0) ln

(
4 sin2

(
x− x′

2

))]

= lim
x′→x




ik

4

(
1 +

2i

π
(C + ln(2))

) J1

(
k
√

(x− x′)2 + (f(x)− f(x′))2
)

√
(x− x′)2 + (f(x)− f(x′))2

+
k2

8π
Σ1

(
k
√

(x− x′)2 + (f(x)− f(x′))2
))

(−f ′(x′)(x− x′) + f(x)− f(x′))

]

+ lim
x′→x

−f ′(x′)(x− x′) + f(x)− f(x′)

2π ((x− x′)2 + (f(x)− f(x′))2)

+ lim
x′→x

[
k

4π

(
− ln

(
k2
(
(x− x′)2 + (f(x)− f(x′))2

))
+ ln

(
4 sin2

(
x− x′

2

)))

×
J1

(
k
√

(x− x′)2 + (f(x)− f(x′))2
)

√
(x− x′)2 + (f(x)− f(x′))2

(−f ′(x′)(x− x′) + f(x)− f(x′))


 ,

(4.B.11)

where C is the Euler’s constant given by (4.A.3), and Σ1 is defined in (4.A.7). Since

lim
x′→x

−f ′(x′)(x− x′) + f(x)− f(x′)

(x− x′)2 + (f(x)− f(x′))2
= lim

x′→x

[
f(x′) + f ′(x′)(x− x′) + 1

2
f ′′(x′)(x− x′)2

(x− x′)2 + (f(x)− f(x′))2

+
O((x− x′)3)− f ′(x′)(x− x′)− f(x′)

(x− x′)2 + (f(x)− f(x′))2

]
=

f ′′(x)

2(1 + f ′(x)2)
,

(see Section 2.2.3 in [128] for more details), (4.B.11) results

lim
x′→x

Lr(x, x
′; 0) = lim

x′→x

[ −f ′(x′)(x− x′) + f(x)− f(x′)

2π ((x− x′)2 + (f(x)− f(x′))2)

− k2

8π
(−f ′(x′)(x− x′) + f(x)− f(x′))× ln

(
k2 ((x− x′)2 + (f(x)− f(x′))2)

4 sin2
(
x−x′

2

)
)]

=
f ′′(x)

4π(1 + f ′(x)2)
. (4.B.12)

When the shifts are used, that is, if J > 0, the kernel L is given by (4.B.6). Then, taking
into account (4.B.7) and (4.B.8), the values of the smooth kernel Lr at x = x′ are computed
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as follows:

Lr(x, x; J) = lim
x′→x

Lr(x, x
′; J)

= lim
x′→x

[
ik

4

J∑

l=0

[
(−1)l

(
J

l

)
H

(1)
1 (k

√
(x− x′)2 + (f(x)− f(x′) + lh)2)

×−f
′(x′)(x− x′) + f(x)− f(x′) + lh√
(x− x′)2 + (f(x)− f(x′) + lh)2

]
+

k

4π
ln

(
4 sin2

(
x− x′

2

))

× J1

(
k
√

(x− x′)2 + (f(x)− f(x′))2
) −f ′(x′)(x− x′) + f(x)− f(x′)√

(x− x′)2 + (f(x)− f(x′))2

]
.

Since the singularities in the Hankel function H
(1)
1 appear when l = 0, the sum has been

split in two parts: l = 0, to use (4.B.12), and l > 0. Then, the values of Lr when x is equal
to x′ are computed as

Lr(x, x; J) = lim
x′→x

Lr(x, x
′; J) = lim

x′→x

[
k

4

−f ′(x′)(x− x′) + f(x)− f(x′)√
(x− x′)2 + (f(x)− f(x′))2

× ln

(
4 sin2

(
x− x′

2

))(
iH

(1)
1

(
k
√

(x− x′)2 + (f(x)− f(x′))2
)

+
1

π
J1

(
k
√

(x− x′)2 + (f(x)− f(x′))2
))]

+ lim
x′→x

(
ik

4

J∑

l=1

[
(−1)l

(
J

l

)
H

(1)
1

(
k
√

(x− x′)2 + (f(x)− f(x′) + lh)2
)

× −f
′(x′)(x− x′) + f(x)− f(x′) + lh√
(x− x′)2 + (f(x)− f(x′) + lh)2

])
=

f ′′(x)

4π(1 + f ′(x)2)

+
ik

4

J∑

l=1

(−1)l
(
J

l

)
H

(1)
1 (klh).

4.B.3 Adjoint double-layer potential

This section is devoted to describing the kernel decomposition of the adjoint double-
layer potential by using a similar procedure to the arguments applied to the double-layer
potential. As in the single- and double-layer representations, and for simplicity, the kernel
decomposition in a periodic setting is detailed, without including windowing and shifting
methods. The considered kernel is formed by the normal derivative of the half-space Green
function GJ (given by (4.8)) multiplied by the norm of the normal vector to the boundary,
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that is,

∫ L/2

−L/2

∂GJ

∂νx
(x− x′, f(x)− f(x′))

√
1 + f ′(x′)2

︸ ︷︷ ︸
H(x, x′; J)

ϕ(x′)dx′ =

∫ L/2

−L/2
H(x, x′; J)ϕ(x′)dx′,

where taking into account the definition of GJ , given by (4.8), and the derivative of the

Hankel function H
(1)
0 (see (4.A.11)), it holds

H(x, x′; J) =
∂GJ

∂νx
(x− x′, f(x)− f(x′))

√
1 + f ′(x′)2

= −ik
4

(
J∑

l=0

[
(−1)l

(
J

l

)
H

(1)
1

(
k
√

(x− x′)2 + (f(x)− f(x′) + lh)2
)

×−f
′(x)(x− x′) + f(x)− f(x′) + lh√
(x− x′)2 + (f(x)− f(x′) + lh)2

] √
1 + f ′(x′)2

√
1 + f ′(x)2

)
. (4.B.13)

Considering the asymptotic expansion of the Hankel function of order 1 at the origin
(see (4.A.6)), the kernel H presents logarithmic singularities at x = x′ when l = 0. Then,
following Martensen [122] and Kussmaul [108], the kernel H can be split into a smooth
kernel Hr, and a logarithmic part (see Remark 4.B.1 for subscript notation), that is,

H(x, x′; J) = Hs(x, x
′; J) ln

(
4 sin2

(
x− x′

2

))
+Hr(x, x

′; J),

where

Hs(x, x
′; J) =

k

4π
J1

(
k
√

(x− x′)2 + (f(x)− f(x′))2
) −f ′(x)(x− x′) + f(x)− f(x′)√

(x− x′)2 + (f(x)− f(x′))2

×
√

1 + f ′(x′)2

√
1 + f ′(x)2

, (4.B.14)

Hr(x, x
′; J) = H(x, x′; J)−Hs(x, x

′; J) ln

(
4 sin2

(
x− x′

2

))
. (4.B.15)

To deal with the singularities appearing in the Bessel function when x = x′, it is neces-
sary to compute the values of Hs and Hr when x coincides with x′. Considering (4.B.14),
and the limit of the Bessel function J1(t) when t → 0 (see (4.A.10)), the values of Hs at
x = x′ result
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Hs(x, x; J) = lim
x′→x

Hs(x, x
′; J) = lim

x′→x

[
k

4π
J1

(
k
√

(x− x′)2 + (f(x)− f(x′))2
)

×−f
′(x)(x− x′) + f(x)− f(x′)√
(x− x′)2 + (f(x)− f(x′))2

√
1 + f ′(x′)2

√
1 + f ′(x)2

]

= lim
x′→x

k2

8π
(−f ′(x′)(x− x′) + f(x)− f(x′)) = 0. (4.B.16)

The values of Hr at x = x′ have been computed in two different cases: when shifts are not
considered (J = 0), and when they are used (J > 0). If J = 0, using (4.B.13), the kernel
H results

H(x, x′; 0) = −ik
4
H

(1)
1

(
k
√

(x− x′)2 + (f(x)− f(x′))2
) −f ′(x)(x− x′) + f(x)− f(x′)√

(x− x′)2 + (f(x)− f(x′))2

×
√

1 + f ′(x′)2

√
1 + f ′(x)2

. (4.B.17)

Similarly to the double-layer potential, and considering (4.B.14), (4.B.15), and (4.B.17),
the values of the smooth kernel Hr when x is equal to x′ can be computed as

Hr(x, x; 0) = lim
x′→x

Hr(x, x
′; 0) = lim

x′→x

[
H(x, x′; 0)−Hs(x, x

′; 0) ln

(
4 sin2

(
x− x′

2

))]

= lim
x′→x






−ik

4

(
1− 2i

π
(C + ln(2))

) J1

(
k
√

(x− x′)2 + (f(x)− f(x′))2
)

√
(x− x′)2 + (f(x)− f(x′))2

− k2

8π
Σ1

(
k
√

(x− x′)2 + (f(x)− f(x′))2
)]

+
k

4π

√
1 + f ′(x′)2

√
1 + f ′(x)2

×
J1

(
k
√

(x− x′)2 + (f(x)− f(x′))2
)

√
(x− x′)2 + (f(x)− f(x′))2

(−f ′(x)(x− x′) + f(x)− f(x′))

× ln

(
k2 ((x− x′)2 + (f(x)− f(x′))2)

4 sin2
(
x−x′

2

)
)]

− lim
x′→x

−f ′(x)(x− x′) + f(x)− f(x′)

2π ((x− x′)2 + (f(x)− f(x′))2)

√
1 + f ′(x′)2

√
1 + f ′(x)2

=
f ′′(x)

4π(1 + f ′(x)2)
,

(4.B.18)

where C is the Euler’s constant given by (4.A.3), and Σ1 is defined in (4.A.7). When
J > 0 is considered, the kernel H is given by (4.B.13). Then, taking into account (4.B.14),



4.B. Kernel decomposition in a periodic setting 201

and (4.B.15), the values of Hr at x = x′ result

Hr(x, x; J) = lim
x′→x

Hr(x, x
′; J) = lim

x′→x

[
H(x, x′; J)−Hs(x, x

′; J) ln

(
4 sin2

(
x− x′

2

))]

= lim
x′→x

[(
−ik

4

(
J∑

l=0

[
(−1)l

(
J

l

)
H

(1)
1 (k

√
(x− x′)2 + (f(x)− f(x′) + lh)2)

×−f
′(x)(x− x′) + f(x)− f(x′) + lh√
(x− x′)2 + (f(x)− f(x′) + lh)2

])
− k

4π
ln

(
4 sin2

(
x− x′

2

))

×J1

(
k
√

(x− x′)2 + (f(x)− f(x′))2
) −f ′(x)(x− x′) + f(x)− f(x′)√

(x− x′)2 + (f(x)− f(x′))2

)

×
√

1 + f ′(x′)2

√
1 + f ′(x)2

]
.

The singularities in the Hankel function H
(1)
1 appear when l = 0 so, the summation is

separated in two parts: one of them when l = 0, to use (4.B.18), and another one when
l > 0. Then, the values of Hr at x = x′ are

Hr(x, x; J) = lim
x′→x

Hr(x, x
′; J)

= − lim
x′→x

(
ik

4

J∑

l=1

[
(−1)l

(
J

l

)
H

(1)
1

(
k
√

(x− x′)2 + (f(x)− f(x′) + lh)2
)

×−f
′(x′)(x− x′) + f(x)− f(x′) + lh√
(x− x′)2 + (f(x)− f(x′) + lh)2

] √
1 + f ′(x′)2

√
1 + f ′(x)2

)
f ′′1 (x)

4π(1 + f ′(x)2)

=
f ′′1 (x)

4π(1 + f ′(x)2)
− ik

4

J∑

l=1

(−1)l
(
J

l

)
H

(1)
1 (klh).

4.B.4 Hypersingular formulation

This section is devoted to describing the kernel decomposition of the normal derivative
of a double-layer potential (also called, hypersingular potential). In order to deal with
this operator, the difference of hypersingular potentials is considered because thus, the
singularities appearing in the kernels disappear. As in the single-, double-, and adjoint
double-layer potential, to ease the understanding, neither shifting nor windowing methods
are considered. The kernel considered is formed by the difference of the second normal
derivative of the half-space Green function GJ±, given by (4.43), multiplied by the norm of
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the normal vector to the boundary. Then, the integral considered is

I(x) =

∫ L/2

−L/2

[(
∂2GJ−

∂νx∂νx′
(x− x′, f(x)− f(x′))− ∂2GJ+

∂νx∂νx′
(x− x′, f(x)− f(x′))

)

×
√

1 + f ′(x′)2ϕ(x′)
]

dx′.

To follow same arguments than before, it is called K to

K(x, x′; J) =

(
∂2GJ−

∂νx∂νx′
(x− x′, f(x)− f(x′))− ∂2GJ+

∂νx∂νx′
(x− x′, f(x)− f(x′))

)√
1 + f ′(x′)2,

and then

I(x) =

∫ L/2

−L/2
K(x, x′; J)ϕ(x′)dx′.

In order to compute the decomposition of K , the difference of double-layer potentials is
considered. Taking into account the definition of GJ±, given by (4.43), the difference of
these potentials results

(
∂GJ−

∂νx′
(x− x′, f(x)− f(x′))− ∂GJ+

∂νx′
(x− x′, f(x)− f(x′))

)

=
i

4

(
J∑

l=0

[
(−1)l

(
J

l

)[
k−H

(1)
1

(
k−
√

(x− x′)2 + (f(x)− f(x′)− lh−)2
)

× (x− x′, f(x)− f(x′)− lh−)√
(x− x′)2 + (f(x)− f(x′)− lh−)2

· (−f ′(x′), 1)√
1 + f ′(x′)2

− k+H
(1)
1

(
k+
√

(x− x′)2 + (f(x)− f(x′) + lh+)2
)

× (x− x′, f(x)− f(x′) + lh+)√
(x− x′)2 + (f(x)− f(x′) + lh+)2

· (−f ′(x′), 1)√
1 + f ′(x′)2

]])

=
i

4

(
J∑

l=0

[
(−1)l

(
J

l

)[
k−H

(1)
1

(
k−
√

(x− x′)2 + (f(x)− f(x′)− lh−)2
)
χ(x, x′;−lh−)

− k+H
(1)
1

(
k+
√

(x− x′)2 + (f(x)− f(x′) + lh+)2
)
χ(x, x′; lh+)

]])
, (4.B.19)

where

χ(x, x′; δ) =
(x− x′, f(x)− f(x′) + δ)√

(x− x′)2 + (f(x)− f(x′) + δ)2
· (−f ′(x′), 1)√

1 + f ′(x′)2
. (4.B.20)
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Considering the derivative of the Hankel function H
(1)
1 (see (4.A.12)), the normal derivative

of the difference of double-layer potentials (4.B.19) is given by

K(x, x′; J) =
∂2GJ−

∂νx∂νx′
(x− x′, f(x)− f(x′))− ∂2GJ+

∂νx∂νx′
(x− x′, f(x)− f(x′))

=
i

4

(
J∑

l=0

[
(−1)l

(
J

l

)[(
−k2
−H

(1)
2

(
k−
√

(x− x′)2 + (f(x)− f(x′)− lh−)2
)

+
k−H

(1)
1

(
k−
√

(x− x′)2 + (f(x)− f(x′) + lh−)2
)

√
(x− x′)2 + (f(x)− f(x′)− lh−)2


χ(x, x′;−lh−)

× χ̃(x, x′;−lh−)−
(
−k2

+H
(1)
2

(
k+
√

(x− x′)2 + (f(x)− f(x′) + lh+)2
)

+
k+H

(1)
1

(
k+
√

(x− x′)2 + (f(x)− f(x′) + lh+)2
)

√
(x− x′)2 + (f(x)− f(x′) + lh+)2




× χ(x, x′; lh+)χ̃(x, x′; lh+)
]])

+
i

4

(
J∑

l=0

[
(−1)l

(
J

l

)[
k−H

(1)
1

(
k−
√

(x− x′)2 + (f(x)− f(x′)− lh−)2
)

× ∂χ

∂νx
(x, x′;−lh−)− k+ ∂χ

∂νx
(x, x′; lh+)

× H
(1)
1

(
k+
√

(x− x′)2 + (f(x)− f(x′) + lh+)2
)]])

=
i

4

(
J∑

l=0

[
(−1)l

(
J

l

)[
−k2
−H

(1)
2

(
k−
√

(x− x′)2 + (f(x)− f(x′)− lh−)2
)

× χ(x, x′;−lh−)χ̃(x, x′;−lh−)+k2
+H

(1)
2

(
k+
√

(x− x′)2 + (f(x)− f(x′)+ lh+)2
)

× χ(x, x′; lh+)χ̃(x, x′; lh+)
]])

+
i

4

(
J∑

l=0

[
(−1)l

(
J

l

)

×
[
k−H

(1)
1

(
k−
√

(x− x′)2 + (f(x)− f(x′)− lh−)2
)
ξ(x, x′;−lh−)

− k+H
(1)
1

(
k+
√

(x− x′)2 + (f(x)− f(x′) + lh+)2
)
ξ(x, x′; lh+)

]])
,

(4.B.21)
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where χ is given by (4.B.20), and

χ̃(x, x′; δ) =
(x′ − x, f(x′)− f(x) + δ)√

(x′ − x)2 + (f(x′)− f(x) + δ)2
· (−f ′(x), 1)√

1 + f ′(x)2
, (4.B.22)

ξ(x, x′; δ) =
χ(x, x′; δ)χ̃(x, x′; δ)√

(x− x′)2 + (f(x)− f(x′) + δ)2
+

∂χ

∂νx
(x, x′; δ). (4.B.23)

The normal derivative of χ is given by

∂χ

∂νx
(x, x′; δ)

=

(
−f ′(x′) ((x− x′)2 + (f(x)− f(x′) + δ)2)− (x− x′) (−f ′(x′)(x− x′) + f(x)− f(x′) + δ)

√
(x− x′)2 + (f(x)− f(x′) + δ)2

3√
1 + f ′(x′)2

√
1 + f ′(x)2

,

((x− x′)2 + (f(x)− f(x′) + δ)2)− (−f ′(x′)(x− x′) + f(x)− f(x′) + δ) (f(x)− f(x′) + δ)
√

(x− x′)2 + (f(x)− f(x′) + δ)2
3√

1 + f ′(x′)2
√

1 + f ′(x)2

)

=
f ′(x)f ′(x′)(f(x)− f(x′) + δ)2 + (x− x′)2 + (x− x′)(f(x)− f(x′) + δ)(f ′(x) + f ′(x′))

√
(x− x′)2 + (f(x)− f(x′) + δ)2

3√
1 + f ′(x′)2

√
1 + f ′(x)2

.

(4.B.24)

By using (4.B.20), (4.B.22), and (4.B.24), the expression (4.B.23) results

ξ(x, x′; δ) =
χ(x, x′; δ)χ̃(x, x′; δ)√

(x− x′)2 + (f(x)− f(x′) + δ)2
+

∂χ

∂νx
(x, x′; δ)

=
(−f ′(x′)(x− x′) + f(x)− f(x′) + δ) (−f ′(x)(x− x′) + f(x)− f(x′) + δ)

√
(x− x′)2 + (f(x)− f(x′) + δ)2

3√
1 + f ′(x′)2

√
1 + f ′(x)2

=
(x− x′)2(1 + f ′(x)f ′(x′)) + (f(x)− f(x′) + δ)(1 + f ′(x)f ′(x′))
√

(x− x′)2 + (f(x)− f(x′) + δ)2
3√

1 + f ′(x′)2
√

1 + f ′(x)2

=
1 + f ′(x)f ′(x′)√

(x− x′)2 + (f(x)− f(x′) + δ)2
√

1 + f ′(x′)2
√

1 + f ′(x)2
.
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Then, the difference of hypersingular kernels (4.B.21) is given by

K(x, x′; J) =
∂2GJ−

∂νx∂νx′
(x− x′, f(x)− f(x′))− ∂2GJ+

∂νx∂νx′
(x− x′, f(x)− f(x′))

= − i
4

(
J∑

l=0

[
(−1)l

(
J

l

)[
k2
−H

(1)
2

(
k−
√

(x− x′)2 + (f(x)− f(x′)− lh−)2
)

× χ(x, x′;−lh−)χ̃(x, x′;−lh−)−k2
+H

(1)
2

(
k+
√

(x− x′)2 + (f(x)− f(x′) + lh+)2
)

× χ(x, x′; lh+)χ̃(x, x′; lh+)
]])

+
i

4

(
J∑

l=0

[
(−1)l

(
J

l

)

×


k−

H
(1)
1

(
k−
√

(x− x′)2 + (f(x)− f(x′)− lh−)2
)

√
(x− x′)2 + (f(x)− f(x′)− lh−)2

− k+
H

(1)
1

(
k+
√

(x− x′)2 + (f(x)− f(x′) + lh+)2
)

√
(x− x′)2 + (f(x)− f(x′) + lh+)2






× 1 + f ′(x)f ′(x′)√
1 + f ′(x′)2

√
1 + f ′(x)2

)
= K1(x, x′; J) +K2(x, x′; J),

where

K1(x, x′; J) = − i
4

(
J∑

l=0

[
(−1)l

(
J

l

)[
k2
−H

(1)
2

(
k−
√

(x− x′)2 + (f(x)− f(x′)− lh−)2
)

× χ(x, x′;−lh−)χ̃(x, x′;−lh−)

− k2
+H

(1)
2

(
k+
√

(x− x′)2 + (f(x)− f(x′) + lh+)2
)
χ(x, x′; lh+)

× χ̃(x, x′; lh+)
]])√

1 + f ′(x′)2, (4.B.25)

K2(x, x′; J) =
i

4




J∑

l=0


(−1)l

(
J

l

)
k−

H
(1)
1

(
k−
√

(x− x′)2 + (f(x)− f(x′)− lh−)2
)

√
(x− x′)2 + (f(x)− f(x′)− lh−)2

−k+
H

(1)
1

(
k+
√

(x− x′)2 + (f(x)− f(x′) + lh+)2
)

√
(x− x′)2 + (f(x)− f(x′) + lh+)2






 1 + f ′(x)f ′(x′)√

1 + f ′(x)2
.

(4.B.26)

Taking into account the asymptotic expansion of the Hankel function of order 1 and 2 at
the origin (see (4.A.6) and (4.A.8)), the kernels K1 and K2 present logarithmic singularities
at x = x′ when l = 0, and following Martensen [122] and Kussmaul [108], the kernels K1



206 Simulation of layered non-planar geometries

and K2 can be split into a smooth kernel K1
r and K2

r , respectively, and a logarithmic part
(see Remark 4.B.1 for subscript notation), that is,

K1(x, x′; J) = K1
s (x, x′; J) ln

(
4 sin2

(
x− x′

2

))
+K1

r (x, x′; J),

K2(x, x′; J) = K2
s (x, x′; J) ln

(
4 sin2

(
x− x′

2

))
+K2

r (x, x′; J),

where

K1
s (x, x′; J) =

1

4π

√
1 + f ′(x′)2

[
k2
−J2

(
k−
√

(x− x′)2 + (f(x)− f(x′))2
)

−k2
+J2

(
k+
√

(x− x′)2 + (f(x)− f(x′))2
)]

× (x− x′, f(x)− f(x′))√
(x− x′)2 + (f(x)− f(x′))2

· (−f ′(x′), 1)√
1 + f ′(x′)2

× (x− x′, f(x)− f(x′))√
(x− x′)2 + (f(x)− f(x′))2

· (−f ′(x), 1)√
1 + f ′(x)2

=
1

4π
χ(x, x′; 0)χ̃(x, x′; 0)

[
k2
−J2

(
k−
√

(x− x′)2 + (f(x)− f(x′))2
)

−k2
+J2

(
k+
√

(x− x′)2 + (f(x)− f(x′))2
)]√

1 + f ′(x′)2, (4.B.27)

K2
s (x, x′; J) = − 1

4π



k−J1

(
k−
√

(x− x′)2 + (f(x)− f(x′))2
)

√
(x− x′)2 + (f(x)− f(x′))2

−
k+J1

(
k+
√

(x− x′)2 + (f(x)− f(x′))2
)

√
(x− x′)2 + (f(x)− f(x′))2


 1 + f ′(x)f ′(x′)√

1 + f ′(x)2

= − 1

4π

[
k−J1

(
k−
√

(x− x′)2 + (f(x)− f(x′))2
)

− k+J1

(
k+
√

(x− x′)2 + (f(x)− f(x′))2
)]
ξ(x, x′; 0), (4.B.28)

K1
r (x, x′; J) = K1(x, x′; J)−K1

s (x, x′; J) ln

(
4 sin2

(
x− x′

2

))
, (4.B.29)

K2
r (x, x′; J) = K2(x, x′; J)−K2

s (x, x′; J) ln

(
4 sin2

(
x− x′

2

))
. (4.B.30)

To deal with the singularities appearing in the Bessel functions at the origin, it is necessary
to work separately with the values of the kernels K1

s , K1
r , K2

s , and K2
r , at x = x′. The

values of K1
s when x = x′ can be computed as

K1
s (x, x; J) = lim

x′→x
K1

s (x, x′; J) = 0



4.B. Kernel decomposition in a periodic setting 207

since

lim
x′→x

χ(x, x′; 0) = lim
x′→x

(x− x′, f(x)− f(x′))√
(x− x′)2 + (f(x)− f(x′))2

· (−f ′(x′), 1)√
1 + f ′(x′)2

= lim
x′→x

−f ′(x′) +
f(x)− f(x′)

x− x′√
1 +

(f(x)− f(x′))2

(x− x′)2

√
1 + f ′(x′)2

= 0. (4.B.31)

lim
x′→x

χ̃(x, x′; 0) = 0 (4.B.32)

Now, taking into account (4.B.28), and the limit of the Bessel function J1(t) when t → 0
(see (4.A.10)),

K2
s (x, x; J) = lim

x′→x
K2

s (x, x′; J) = lim
x′→x
− 1

4π

(
k−J1

(
k−
√

(x− x′)2 + (f(x)− f(x′))2
)

− k+J1

(
k+
√

(x− x′)2 + (f(x)− f(x′))2
))

ξ(x, x′, 0)

= − 1

8π
((k−)2 − (k+)2)

√
1 + f ′(x)2. (4.B.33)

Then the values of the kernel Ks when x coincides with x′ are computed by using

Ks(x, x; J) = K1
s (x, x; J) +K2

s (x, x; J) = − 1

8π
((k−)2 − (k+)2)

√
1 + f ′(x)2.

The values of K1
r and K2

r at x = x′ have been computed in two different cases: when shifts
are not used (J = 0) and when shifts are used (J > 0). If J = 0, using (4.B.25) the kernel
K1 results

K1(x, x′; 0) = − i
4
χ(x, x′; 0)χ̃(x, x′; 0)

[
k2
−H

(1)
2

(
k−
√

(x− x′)2 + (f(x)− f(x′))2
)

−k2
+H

(1)
2

(
k+
√

(x− x′)2 + (f(x)− f(x′))2
)]√

1 + f ′(x′)2.

Then, considering the asymptotic behavior of χ and χ̃ at x = x′ (see (4.B.31), and (4.B.32)),
it holds

K1
r (x, x; 0) = lim

x′→x
K1

r (x, x′; 0) = 0. (4.B.34)

On the other hand, when J = 0 using (4.B.26) the kernel K2 results

K2(x, x′; 0) =
i

4

[
k−H

(1)
1

(
k−
√

(x− x′)2 + (f(x)− f(x′))2
)

− k+H
(1)
1

(
k+
√

(x− x′)2 + (f(x)− f(x′))2
)]
ξ(x, x′; 0). (4.B.35)
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Considering the asymptotic expansion of the Hankel function H
(1)
1 (see (4.A.6) for more

details) and taking into account (4.B.28), (4.B.30), and (4.B.35), the values of the smooth
kernel K2

r at x = x′ can be computed as

K2
r (x, x; J) = lim

x′→x
K2

r (x, x′; J) = lim
x′→x

[
K2(x, x′; J)−K2

s (x, x′; J) ln

(
4 sin2

(
x− x′

2

))]

= lim
x′→x

((
i

4
− C

2π

)
1√

(x− x′)2 + (f(x)− f(x′))2

×
[
k−J1

(
k−
√

(x− x′)2 + (f(x)− f(x′))2
)
− k+J1

(
k+
√

(x− x′)2 + (f(x)− f(x′))2
)]

+
1

2π ((x− x′)2 + (f(x)− f(x′))2)

[
k−

k−
− k+

k+

]

+
1

8π

[
k2
−Σ1

(
k−
√

(x− x′)2 + (f(x)− f(x′))2
)
−k2

+Σ1

(
k+
√

(x− x′)2 + (f(x)− f(x′))2
)]

− 1

4π

[
k− ln

(
k2
− ((x− x′)2 + (f(x)− f(x′))2)

4

) J1

(
k−
√

(x− x′)2 + (f(x)− f(x′))2
)
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where C is the Euler’s constant given by (4.A.3), and Σ1 is the function given by (4.A.7),
defined in Appendix 4.A. Once the asymptotic expressions for the kernels K1

r , and K2
r

(given by (4.B.34), and (4.B.36), respectively) have been computed, it is straightforward
to calculate the value of Kr when x = x′ as

Kr(x, x; 0) = K1
r (x, x; 0) +K2

r (x, x; 0) =

((
i

8
− C

4π
+

1

8π

)(
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− − k2

+
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− 1

4π
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)
− k2
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)])√
1 + f ′(x)2.

If any value of shift is considered, that is, if J > 0, the kernel K1 is given by (4.B.25), and
the expressions for K1

s , and K1
r , are given by (4.B.27) and (4.B.29) respectively. Since the

singularities appearing in the Hankel function H
(1)
2 at the origin appear only when l = 0,

to deal with them is necessary to split the sum in two parts: l = 0, and l > 0. In this case,
the values of the smooth kernel K1

r , when x coincides with x′, can be computed as

K1
r (x, x; J) = lim
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.

On the other hand, if J > 0 the kernel K2 is given by (4.B.26), and the expressions for
K2

s , and K2
r , are given by (4.B.28) and (4.B.30) respectively. As in the case of the kernel

K1
r , to deal with the singularities appearing in the Hankel function H

(1)
1 at the origin, it is

necessary to deal separately with l = 0, and with l > 0. Then, the values of the smooth
kernel K2

r at x = x′ are computed as
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K2
r (x, x; J) = lim
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where C is the Euler’s constant given by (4.A.3).
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4.C Perfectly Matched Layers

When the boundary in the transmission problem is a sinusoidal grating, it is not possible
to compute an analytical solution of the problem. To compare the solution obtained with
the proposed method, a finite element method (FEM) together with the use of a Perfectly
Matched Layer technique (PML) have been considered. Some details about how the PMLs
have been used, can be found below.

4.C.1 Statement of the quasi-periodic problem

Firstly, the original quasi-periodic problem stated in Ω# = Ω#
+ ∪Ω#

− is written in terms
of a unique unknown field U , such that

U =

{
U+ in Ω#

+,

U− in Ω#
−.

Taking into account an analogous definition for the wave number k, defined by

k =

{
k+ in Ω#

+,

k− in Ω#
−,

the quasi-periodic problem (4.31)-(4.36), (4.38), and (4.40) can be written as follows: Given
a quasi-periodic length L, and a constant factor α, find a quasi-periodic function U , such
that it holds

∆U + k2U = 0 in Ω#,

U(x+ L, y) = U(x, y)eiαL, with (x, y) ∈ Ω#,

& radiation conditions at |y| → +∞.

The radiation conditions are used to ensure that no waves are coming from y → −∞,
and that an incident plane wave U inc(x, y) = ei(α

+x−β+y) with (α+)2 + (β+)2 = (k+)2, is
impinging the coupling boundary Γ# in the medium Ω#

+ coming from y → +∞. With this
setting in mind, the computation of the scattering field requires the use of a translation of
the solution, splitting the total pressure field U in two parts: the incident pressure U inc,
and the scattering field U s.

Translation of the solution

If the original unknown field U is translated with respect to the incident plane wave
field, the scattering field can be defined by Ũ s = U − U inc in Ω#

+. This translation of the
solution does not affect the Helmholtz equation since the plane wave U inc is also a solution
of the Helmholtz equation in Ω#

+. Hence, it holds

∆Ũ s + (k+)2Ũ s = 0 in Ω#
+.
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However, the use of the same translation in Ω#
− would introduce a non-null source term

(right-hand side) in the Helmholtz equation, which could have a non compact support in
Ω#
−, and potentially could cause some drawbacks from a computational point of view, and

difficult an adequate writing of the radiation boundary conditions at y → −∞. To avoid
this kind of issues, the incident plane wave is going to be replaced by a windowed version,
this is,

U inc
W (x, y) = ei(α

+x−β+y)W (y, a, b),

where W is the window function, such that W (y, a, b) is equal to the function S(y, a, b)
defined in (4.6) if a ≥ y ≥ b, W (y, a, b) = 1 if y > a, and W (y, a, b) = 0 if y < b. In this
manner, the plane wave expression remains unmodified in Ω#

+, whereas it will be windowed

in Ω#
− once it is settled that lines y = a and y = b does not intersect the coupling boundary

Γ#. Consequently, using this new windowed expression for U inc
W , the plane wave expression

is not modified in Ω#
+, and the associated source term finc has compact support in Ω#

−
(located in the half-plane y > b).

Now, taking into account that the windowed incident field U inc
W is quasi-periodic, the

translated quasi-periodic problem is stated as follows: Given a quasi-periodic length L, and
a constant factor α, find a quasi-periodic scattering function Ũ s, such that it holds

∆Ũ s + k2Ũ s = finc in Ω#,

Ũ s(L/2, y) = Ũ s(−L/2, y)eiαL, with (x, y) ∈ Ω#,

& radiation conditions at |y| → +∞,
where the source term finc is a quasi-periodic function with compact support (which does
not intersect Ω#

+), and given by

finc = −∆U inc
W − k+2

U inc
W .

Obviously, the source term finc depends on the window function W (and subsequently, on
parameters a and b). However, the accuracy of the numerical results will not be affected
by the selection of this parameters if they are selected adequately to avoid boundary layers
associated with a small value of a−b. Finally, the radiation conditions of the quasi-periodic
problem can be written in terms of the Rayleigh expansions described in Equations (4.38)
and (4.40). However, the use of a series expansion in combination with a standard finite
element discretization of the quasi-periodic problem is not very suitable for its numeri-
cal approximation, since it would involve dense matrix computations (as in the classical
Dirichlet-to-Neumann series approximations [85]). Instead using that numerical methodol-
ogy, an equivalent periodic problem in combination with a Perfectly Matched Layer (PML)
technique will be used, and described in the following sections.

Transformation into a periodic problem

From any quasi-periodic field, an associated periodic function can be defined as follows:
the periodic scattering field Uper related to the quasi-periodic field Ũ s holds

Ũ s(x, y) = Uper(x, y)eiαx.
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Replacing this expression of Ũ s in the Helmholtz equation, a new periodic formulation is
obtained: Given a periodic length L, and a constant factor α, find a periodic scattering
function Uper, such that it holds

∆Uper + 2iα
∂Uper

∂x
+ k2Uper = fper in Ω#, (4.C.1)

Uper(L/2, y) = Uper(−L/2, y), with (x, y) ∈ Ω#, (4.C.2)

& periodic radiation conditions at |y| → +∞, (4.C.3)

where fper(x, y) = finc(x, y)e−iαx is a periodic function. The last aspect of the formulation
written above which should be addressed before having a complete suitable formulation for a
standard numerical treatment consists in the unbounded character of the domain Ω#. More
precisely, the periodic radiation conditions will be replaced by other conditions, which will
be stated in a bounded computational domain. With this purpose, the Perfectly Matched
Layers technique will be used to truncate the original unbounded domain Ω#. The PML
layers mimic the radiation boundary conditions within some additional absorbing layers,
which will damp the solution as soon as the waves are reaching the exterior boundary of
the truncated computational domain.

Perfectly Matched Layers

The main idea to introduce the governing equation associated with the Perfectly Matched
Layers consists in the use of a complex-valued stretching of variables to replace the orig-
inal spatial coordinates by some new complex-valued expressions, which will ensure the
absorbing behavior of the Helmholtz solution inside the PML layers. With this goal, the
unbounded physical domain is truncated at boundaries y = −l (at the bottom of the com-
putational domain), and y = l (at the top of the computational domain), with l > 0,
and consequently, two PML layers will be placed on the top and bottom of this trun-
cated physical domain, which will be again denoted by Ω# abusing on the notation. The
bottom and top PML layers are respectively located at (−L/2, L/2) × (−l − δ,−l), and
(−L/2, L/2)× (l, l + δ), being δ the PML thickness.

Since both top and bottom PML layers should absorb the outgoing waves generated
by the reflection and transmission phenomena on the coupling interface Γ# and hence, to
mimic the radiation conditions at |y| → ∞, given by the series expansion (4.38) and (4.40),
then the complex-valued stretching of y-coordinate should ensure an exponential decay
not only on the propagative waves of form ei(α

±
n x±β±n y) with β±n ∈ R in Ω#

±, but also the

evanescent waves ei(α
±
n x±β±n y) with β±n ∈ C, Imβ±n > 0 in Ω#

±. For that purpose, following the
unbounded complex-valued profile designed in [28] for free-field problems and later adapted
to the quasi-periodic problems in [156], the PML complex-valued variable ŷ(y) is defined
by

ŷ(y) =




y if l ≥ |y|,
1 + i

k

∫ |y|

l

1

l + δ − s ds if l < |y| ≤ l + δ.
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In this manner, the PML is designed such that the solution is expected to be null in the
exterior top and bottom boundaries of the truncated bounded domain Ω#

B = (−L/2, L/2)×
(−l − δ, l + δ). Consequently, formally replacing the y-derivatives by ŷ-derivatives, the
periodic problem (4.C.1)-(4.C.3) is transformed into an equivalent problem:

∂

∂x

(
γ
∂

∂x
Upml

)
+

∂

∂y

(
1

γ

∂

∂x
Upml

)
+ 2iαγ

∂Upml

∂x
+ k2γUpml = γfper in Ω#

B , (4.C.4)

Upml(L/2, y) = Upml(−L/2, y), for y ∈ (−l − δ, l + δ), (4.C.5)

Upml(x,−l − δ) = 0, Upml(x, l + δ) = 0, for x ∈ (−L/2, L/2), (4.C.6)

where

γ(y) =
dŷ

dy
(y) =





1 if l ≥ |y|,
1 + i

k

1

l + δ − |y| if l < |y| ≤ l + δ.

Due to the unbounded character of the complex-valued stretching of variable ŷ is possible
to show that Upml = Uper in (−L/2, L/2)× (−l, l) (see [28, 156] for a detailed discussion).

4.C.2 Variational formulation

Once the equivalent periodic problem has been stated in the unbounded domain ΩB#,
an adequate weighted Sobolev space should be considered to write properly the associated
weak problem. With this goal, the solution of the weak problem will be computed in

V =

{
v ∈ H1

per(Ω
#
B ) : ||v||2V =

∫

Ω#
B

|γ|
∣∣∣∣
∂v

∂x

∣∣∣∣
2

dS +

∫

Ω#
B

1

|γ|

∣∣∣∣
∂v

∂y

∣∣∣∣
2

dS +

∫

Ω#
B

|γ||v|2dS <∞,
}
,

where H1
per(Ω

#
B ) denotes the closure of the y-periodic C∞-functions with respect to the

standard H1-norm. An asymptotic analysis of those functions belonging to V (see [27])
shown that Upml = 0 on the exterior boundaries of the PML layers located at |y| = l + δ,
where the weight |γ(y)| → ∞ when |y| tends to l + δ.

Hence, using a standard Green’s formula argument, the variational problem associated
to the PML formulation (4.C.4)-(4.C.6) is written as follows: Given a piecewise constant
wave number k, a constant α, and a source term fper ∈ L2(Ω#

B ), find Upml ∈ V such that it
holds

∫

Ω#
B

γ
∂Upml

∂x

∂v̄

∂x
dS +

∫

Ω#
B

1

γ

∂Upml

∂y

∂v̄

∂y
dS − k2

∫

Ω#
B

γUpmlv̄dS =

∫

Ω#
B

fperv̄dS, (4.C.7)

for all v ∈ V. Notice that since the windowed source term fper is null inside the PML layers
by definition, so the factor γ in the right-hand side can be removed and consequently, it is
not required to include further assumptions different to fper ∈ L2(Ω#

B ).
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4.C.3 Finite element discretization

Since functional space V is a subspace of H1
per(Ω

#
B ), a standard finite element dis-

cretization can be utilized to compute a numerical approximation of the variational prob-
lem (4.C.7). With this aim, a triangular mesh Th has been used, which is conformal with
the coupling boundary Γ#, and the inner boundaries of the PML layers located on |y| = l.
The finite element solution Uh belongs to the discrete space of piecewise linear continuous
functions, that is,

Vh = {v ∈ C0
per(Ω

#
B ) : v|T ∈ P1(C), ∀T ∈ Th, v(x, l+δ) = v(x,−l−δ) = 0, x ∈ (−L/2, L/2)},

where C0
per(Ω

#
B ) is the space of the y-periodic continuous functions (with period L). Conse-

quently, the discrete problem is written as follows: Given a piecewise constant wave number
k, a constant α, and a source term fper ∈ L2(Ω#

B ), find Uh ∈ Vh such that it holds

∫

Ω#
B

γ
∂Uh
∂x

∂v̄h
∂x

dS +

∫

Ω#
B

1

γ

∂Uh
∂y

∂v̄h
∂y

dS − k2

∫

Ω#
B

γUhv̄hdS =

∫

Ω#
B

fperv̄hdS,

for all vh ∈ Vh. To deal with the numerical integration of those integrals involving the
singular weight γ, a quadrature rule with 12 points (see [170]) has been used to ensure
an exact integration on sixth-order polynomials, which also avoids the evaluation of the
integrands at the quadrature nodes placed on the exterior boundaries of the PML layers
(where γ is singular). Finally, all the numerical results showed in the sections above used
the PML setting δ = 1, l = 12 and the windowed function W (y, a, b) has been considered
with parameters a = −7, b = −10.





Part III

Characterization of complex systems
using time-dependent problems

217





Chapter 5

Characterization of porous materials
using alpha cabins

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

5.2 Methodology based on modal computations . . . . . . . . . . . 222

5.2.1 Displacement formulation with rigid walls . . . . . . . . . . . . . 222

5.2.2 Displacement formulation with absorbing boundaries . . . . . . . 226

5.2.3 Displacement formulation with absorbing boundaries and porous
sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

5.2.4 Finite element discretization . . . . . . . . . . . . . . . . . . . . 233

5.3 Methodology based on a full time-dependent discretization . . 237

5.3.1 Finite element discretization . . . . . . . . . . . . . . . . . . . . 239

5.4 Computation of the absorption values in an alpha cabin . . . . 241

5.4.1 Computation of the reverberation time . . . . . . . . . . . . . . . 241

5.4.2 Computation of the absorption value . . . . . . . . . . . . . . . . 243

5.4.3 Computation of decay rates . . . . . . . . . . . . . . . . . . . . . 244

5.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

5.5.1 Two-dimensional simulations . . . . . . . . . . . . . . . . . . . . 245

5.5.2 Three-dimensional simulation . . . . . . . . . . . . . . . . . . . . 251

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

219





5.1. Introduction 221

5.1 Introduction

In the automotive industry, the effect of sound-absorbing or soundproofing materials
is highly relevant. The more widespread procedure to measure the absorption coefficient
of a material is the Kundt’s tube, following the standard ISO 10534-2 [1]. This method-
ology allows us to compute the absorption coefficient at normal incidence, but this is not
a realistic scenario in automotive acoustics because, in general, noise arrives from every
direction. Although it is possible to compute the absorption coefficient at diffuse field by
using impedance tube data [119], the best-known technique to compute the absorption coef-
ficient at diffuse field is the reverberation room method [15, 109, 132, 166, 167]. The sound
absorption coefficient of a porous material in the automotive industry is often computed in
an alpha cabin [18, 130, 145], which is a small-size reverberation room where the frequency
range and the sample size is adapted to the requirements of the automotive acoustics.

Although a standard for computing the absorption coefficient in an alpha cabin is not
available, there exist different measurement setups for computing it in reverberation rooms,
such as the described in the ISO 354:2003 standard [2] or the ASTM C423-09 standard [50].
The absorption coefficient in a reverberation room is determined by measuring the change in
the reverberation time due to the placement of a sample of the material in the cabin. There
exist several expressions showing the relation between the reverberation time in a room,
and the sound absorption of a sample located in this room [66], such as the Sabine [160],
Eyring [74], or Millington [127] formulas. Then, the absorption coefficient of a porous
sample can be easily computed by measuring the reverberation time in the room with the
material under study, and after, the reverberation time in the empty room. Applying one
of the above-mentioned formulas, it is easy to compute the absorption coefficient of the
porous sample.

The main goal of this chapter consists of the detailed description of numerical procedures
to compute the absorption value at diffuse field associated with porous or fibrous materials
measured in an alpha cabin. Through this chapter, different approaches to compute the
absorption coefficient of a porous material in an alpha cabin, have been studied. In Sec-
tion 5.2, an analysis of different mathematical models that govern the behavior of the sound
field in the cabin is shown. The source and spectral problems have been described, and their
variational and matrix formulations are discussed. Moreover, a numerical methodology to
solve a time-dependent problem based on the computation of the decay modes of the cabin
is described. Since this numerical approach does not allow us to obtain accurate results, a
new numerical methodology based on full time-dependent discretization is described in Sec-
tion 5.3. In Section 5.4, the different existing approaches to compute the absorption values
in a reverberation room are shown, discussing the advantages and disadvantages of each one
to compute the reverberation time and the absorption value in an alpha cabin. Section 5.5
is devoted to performing simulations in two-dimensional and three-dimensional domains.
In Section 5.5.1, a simple rectangular domain has been considered, and some manufactured
experimental data have been used to validate the methodology. Then, a real-world fibrous
material has been used to illustrate that it has been possible to obtain numerical results
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qualitatively similar to those reported by the experimental data. In Section 5.5.2, some
three-dimensional simulations have been performed with a real fibrous material, consider-
ing as experimental data the absorption coefficient of the material measured in the alpha
cabin. Finally, in Section 5.6, some remarks about the obtained results and the proposed
methodology are given.

5.2 Methodology based on modal computations

To compute the absorption coefficient in an alpha cabin, it is essential to describe the
behavior of the sound field inside the cabin. In this section, different mathematical models
are analyzed to choose the most suitable one, which governs the behavior of the sound field
in an alpha cabin. Problems are described considering a generic domain Ω. The variational
formulation of each problem is described, and the time-dependent problems are solved by
using a modal approximation.

5.2.1 Displacement formulation with rigid walls

First, all the boundaries in the domain are supposed rigid. Let us consider Ω the fluid
domain (air in this case). This domain has two disjoint boundaries, that is, Ω = ΓL ∪ ΓN,
where ΓL is the boundary where the acoustic source is located, and ΓN is the rest of the
boundaries. Figure 5.1 shows a scheme of this domain. A rigid wall condition is imposed on
ΓN to model the behavior of the boundaries that are insensitive to the movement exerted
inside the domain. Then, the source problem, written in terms of the displacement field,
consists in, given ω > 0, finding the complex-valued displacement field U such that




−ρFc

2
F∇(divU)− ω2ρFU = 0 in Ω,

U · n = 0 on ΓN,
−ρFc

2
F divU = g on ΓL,

(5.1)

where ρF and cF are the mass density and the sound speed of the air, respectively, g is
the pressure applied on the boundary where the acoustic source is located, ν is the unit
normal vector to the interface ΓL pointing inwards Ω, and n is the unit normal vector to the
interface ΓN pointing outwards Ω. From the time-harmonic assumption, the time-dependent
displacement field is given by

u(p, t) = Re(U(p)eiωt),

where recall that now u depends on the time variable t, but also the spatial position variable
p. Associated with the source problem (5.1), it is straightforward to write a linear spec-
tral problem (in terms of λ = ω2), where the eigenvalues (resonances) and eigenfunctions
(modes) can be computed. In this case, the spectral problem (with real-valued unknown
fields) consists in finding a sequence of eigenpairs (λk,U

k), U k 6= 0, with k ∈ N, and λk > 0
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Figure 5.1: Scheme of a fluid domain (Ω), with one piston-like wall (ΓL) highlighted in
cyan, and rigid boundaries (ΓN) highlighted in red.

such that 


−ρFc

2
F∇(divU k)− λkρFU

k = 0 in Ω,
U k · n = 0 on ΓN,

−ρFc
2
F divU k = 0 on ΓL.

(5.2)

Variational formulation

Although the model with rigid boundaries is not suitable for reproducing the reverbera-
tion times in an alpha cabin, for the sake of completeness, the variational formulation of the
source problem is included in this chapter. The variational formulation of the real-valued
problem (5.1) is described as follows:
Given ω > 0, and g ∈ H−1/2(ΓL), find U ∈ HΓN

(div,Ω), satisfying

∫

Ω

ρFc
2
F divU divW dV − ω2

∫

Ω

ρFU ·W dV =

∫

ΓL

gW · n dS, (5.3)

for all W ∈ HΓN
(div,Ω), being

H(div,Ω) =
{
W ∈

(
L2(Ω)

)2
: divW ∈ L2(Ω)

}
, (5.4)

HΓN
(div,Ω) = {W ∈ H(div,Ω) : W · n = 0 on ΓN} , (5.5)

and L2(Ω) the space of measurable functions whose root mean square is finite. Moreover, if
γ is the trace operator γ : H1(Ω)→ L2(∂Ω), it can be defined

H1/2(∂Ω) = {W ∈ L2(∂Ω) : ∃V ∈ H1(Ω) with V = γ(W )},
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and H−1/2(∂Ω) its dual space, where

H1(Ω) = {W ∈ L2(Ω) : ∇W ∈ (L2(Ω))2}.

The variational formulation of the spectral problem (5.2) is given by:
Find a sequence of eigenpairs (λk,U

k), U k 6= 0, with k ∈ N, λk > 0 and U k ∈ HΓN
(div,Ω)

such that ∫

Ω

ρFc
2
F divU k divW k dV = λk

∫

Ω

ρFU
k ·W k dV, (5.6)

for all W k ∈ HΓN
(div,Ω).

The classical Fredholm’s alternative theorem guarantees the existence and uniqueness of a
solution of the above weak problem (see, for instance, [38]).

Computation of the time-dependent solution by a modal approximation

The calculation of the approximated solution of time-dependent problems requires to
deal with spatial and time discretizations. Any time-marching scheme has implicitly errors
coming from the dissipation and the dispersion phenomena, inherited from the discretization
of the time derivatives. To avoid these kinds of errors and reproduce accurate solutions,
even at middle-frequency regimes, a modal approximation has been used to represent the
solution of the time-dependent problem.

Firstly, the time-dependent system of equations which governs the displacement field u
in the domain Ω with rigid boundaries, in the interval [0, T ], is given as follows:





ρFü− ρFc
2
F∇(divu) = 0 in Ω× [0, T ],

u · n = 0 on ΓN × [0, T ],
−ρFc

2
F divu = 0 on ΓL × [0, T ],
u(·, 0) = u0 in Ω,
u̇(·, 0) = v0 in Ω,

(5.7)

where u̇ = ∂
∂t
u, ü = ∂2

∂t2
u, and u0 and v0 are the displacement and the velocity field at the

initial state. Since the field values of this initial state are generated by the action of the
acoustic source, both fields are given by

u0(p) = Re(U (p)eiωt)|t=0, v0(p) =
∂

∂t
Re(U(p)eiωt)|t=0, (5.8)

where U is the complex-valued displacement field solution of (5.1). The system of equations
written above is the time-dependent version of that one introduced in (5.1) under the time-
harmonic assumption and considering that the acoustic source is not active. Due to this
relation between both problems, it is straightforward to combine a modal expansion (based
on the eigenvalues of the spectral problem (5.2)), to obtain an accurate approximation of
the solution of the time-dependent problem.
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Since the set of eigenmodes {U k}k∈N is a Hilbert basis in L2(Ω) [89], hence any solution
of the model problem (5.1) can be accurately approximated by a finite (truncated) series
of N modes, this is,

Ũ (p) =
N∑

k=1

ũkU
k(p).

Since {U k}Nk=1 is an orthonormal basis with respect to the L2(Ω)-inner product, it is easy to
show that the projection ofU in the discrete modal basis {U k}Nk=1 is given by ũk = 〈U ,U k〉,
where 〈·, ·〉 denotes the L2(Ω)-inner product. Hence, the mode expansion results

Ũ(p) =
N∑

k=1

〈U ,U k〉U k(p). (5.9)

Now, if it is assumed a fixed time (which can be identified as the origin of the time axis
t = 0), the displacement and the velocity field can be written in terms of the real part
of (5.9), following the same statement used in (5.8), i.e., the real-valued displacement and
velocity field, at the initial time t = 0, are given by

u(p, 0) = Re(Ũ(p)eiωt)|t=0 = Re(Ũ(p)), (5.10)

u̇(p, 0) =
∂

∂t
Re(Ũ(p)eiωt)|t=0 = Re(iωŨ(p)). (5.11)

Therefore, the time-evolution of the displacement field u, in absent of volumetric or sur-
face sources, can be written in terms of the time evolution of a modal expansion with
eigenfrequencies ±ωk = ±

√
λk:

u(p, t) = Re

(
N∑

k=1

(
ake

iωkt + bke
−iωkt

)
U k(p)

)
.

Once the initial conditions (5.10)-(5.11) are imposed to determine the modal coefficients ak
and bk, inserting (5.9) in their expressions, it holds

u(p, 0) = Re

(
N∑

k=1

(ak + bk)U
k(p)

)
= Re

(
N∑

k=1

〈U ,U k〉U k(p)

)
,

u̇(p, 0) = Re

(
N∑

k=1

iωk (ak − bk)U k(p)

)
= Re

(
iω

N∑

k=1

〈U ,U k〉U k(p)

)
.

Applying again the orthonormal character of the modal basis {U k}Nk=1, and the fact that
the modes are real-valued, it is obtained

ak =
1

2

(
1 +

ω

ωk

)
〈U ,U k〉, bk =

1

2

(
1− ω

ωk

)
〈U ,U k〉,
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and so, the time-dependent solution for the displacement field u in (5.7) is given by

u(p, t) = Re

(
N∑

k=1

(
1

2

(
1 +

ω

ωk

)
eiωkt +

1

2

(
1− ω

ωk

)
e−iωkt

)
〈U ,U k〉U k(p)

)

= Re

(
N∑

k=1

(
cos(ωkt) + i

ω

ωk
sin(ωkt)

)
〈U ,U k〉U k(p)

)
. (5.12)

Since the spectral problem (5.2) has not any dissipative effect, the eigenmodes {±ωk}Nk=1

are real-valued, and the magnitude of the displacement field u does not decay along time.
Consequently, the field displacement given by the expansion (5.12) is not adequate to
reproduce reverberation times in an alpha cabin because, from a numerical point of view,
an exponential decay on the intensity field is expected.

5.2.2 Displacement formulation with absorbing boundaries

Now, some boundaries are assumed almost rigid; this is, there exist some dissipation
effects. In this case, the boundaries that have dissipation effects have associated a sur-
face impedance, using the most simple model available in the scientific literature (see, for
instance, [25]).

In this case, let us consider Ω the fluid domain. This domain has three disjoint bound-
aries, that is, Ω = ΓL ∪ ΓV ∪ ΓN, where ΓL is the boundary where the acoustic source is
located, ΓV are the boundaries with dissipation, and ΓN are the rest of faces that are consid-
ered rigid (see Figure 5.2). A rigid wall condition is imposed on ΓN since these boundaries
are supposed rigid, and an impedance condition is imposed on ΓV to simulate the dissipa-
tion effects. Again, the source problem in terms of the displacement field consists in, given
ω > 0, finding the complex-valued displacement field U such that





−ρFc
2
F∇(divU)− ω2ρFU = 0 in Ω,

U · n = 0 on ΓN,
−ρFc

2
F divU = g on ΓL,

−ρFc
2
F divU = (αv + iωβv)U ·m on ΓV,

(5.13)

where g is the pressure applied on the boundary where the acoustic source is located,
αv + iωβv is the surface impedance associated with the absorbing boundaries, ν is the unit
normal vector to the interface ΓL pointing inwards Ω, n is the unit normal vector to the
interface ΓN pointing outwards Ω, and m is the unit normal vector to the interface ΓV

pointing outwards Ω.

Associated with the source problem (5.13), a quadratic spectral problem can be written
in terms of σ = iω, where the eigenvalues (resonances) and eigenfunctions (modes) can
be computed. In this case, the spectral problem (with again real-valued unknown fields)
consists in finding a sequence of eigenpairs (σk,U

k), U k 6= 0, with k ∈ N, and Im(σk) > 0,
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Figure 5.2: Scheme of a fluid domain (Ω), with one piston-like wall (ΓL) highlighted in cyan,
absorbing boundaries (ΓV) highlighted in blue, and rigid walls boundaries (ΓN) highlighted
in red.

such that




−ρFc
2
F∇(divU k) + σ2

kρFU
k = 0 in Ω,

U k · n = 0 on ΓN,
−ρFc

2
F divU k = 0 on ΓL,

−ρFc
2
F divU k = (αv + σkβv)U k ·m on ΓV.

(5.14)

Notice that, since the spectral problem is quadratic, there exist two different alternatives to
compute the eigenmodes: (a) to consider specific techniques to deal with the numerical so-
lution of the quadratic eigenvalue problem, or (b) to introduce a new unknown V k = σkU

k

to rewrite the quadratic problem employing a new linear spectral problem, with the double
number of unknowns. If it is considered the second option, after dividing the first and third
equations in (5.14) by σk, the formulation can be rewritten as follows:
Find a sequence of eigenpairs (σk, (U

k,V k)), (U k,V k) 6= (0,0), with k ∈ N and Im(σk) > 0
such that





−ρFc
2
F∇(divU k) + σkρFV

k = 0 in Ω,
ρFV

k = σkρFU
k in Ω,

U k · n = 0, V k · n = 0 on ΓN,
−ρFc

2
F divU k = 0, −ρFc

2
F divV k = 0 on ΓL,

−ρFc
2
F divU k = αvU

k ·m+ βvV
k ·m on ΓV.

(5.15)

Variational formulation

Taking into account the functional spaces defined in (5.4) and (5.5), the weak formula-
tion of the source problem (5.13) is stated as follows:
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Given ω > 0, g ∈ H−1/2(ΓL), and αv, βv ∈ R with positive values, find U ∈ HΓN
(div,Ω),

satisfying
∫

Ω

ρFc
2
F divU divW dV +

∫

ΓV

αvU ·mW ·m dS + iω

∫

ΓV

βvU ·mW ·m dS

− ω2

∫

Ω

ρFU ·W dV =

∫

ΓL

gW · n dS, (5.16)

for all W ∈ HΓN
(div,Ω).

Now, the modified spectral problem (5.15) is linear. Since the partial differential equa-
tions have real-valued coefficients, considering the functional space defined in (5.5), it is
straightforward to check that the eigenmodes satisfy the following variational formulation:
Given αv, βv ∈ R with positive values, find a sequence of eigenpairs (σk, (U

k,V k)) ∈
C×HΓN

(div,Ω)×HΓN
(div,Ω), (U k,V k) 6= (0,0), with k ∈ N, such that

−
∫

Ω

ρFc
2
F divU k divW k dV +

∫

Ω

ρFV
k ·Zk dV −

∫

ΓV

αvU
k ·mW k ·m dS

−
∫

ΓV

βvV
k ·mW k ·m dS = σk

(∫

Ω

ρFV
k ·W k dV +

∫

Ω

ρFU
k ·Zk dV

)
, (5.17)

for all (W k,Zk) ∈ V, where V = HΓN
(div,Ω)×HΓN

(div,Ω).
The proof of the existence and uniqueness of the solution of the above weak problem is
given in [25].

Computation of the time-dependent solution by a modal approximation

As in Section 5.2.1, to avoid errors coming from the discretization of the time derivatives,
a modal approximation has been used to represent the solution of the time-dependent
problem. Firstly, the time-dependent system of equations which governs the displacement
field inside a domain Ω with absorbing boundaries, in the interval [0, T ], is given as follows:





ρFv̇ − ρFc
2
F∇(divu) = 0 in Ω× [0, T ],

ρFv = ρFu̇ in Ω× [0, T ],
u · n = 0, v · n = 0 on ΓN × [0, T ],

−ρFc
2
F divu = 0, −ρFc

2
F div v = 0 on ΓL × [0, T ],

−ρFc
2
F divu = αvu ·m+ βvv ·m on ΓV × [0, T ],
u(·, 0) = u0 in Ω,
u̇(·, 0) = v0 in Ω,

(5.18)

where u0 and v0 are the displacement and the velocity field at the initial state. Since the
field values of this initial state are generated by the action of the acoustic source, both
fields are given by (5.8). Obviously, the system of equations written above is the time-
dependent version of that one introduced in (5.13), under the time-harmonic assumption
and considering that the source is not active. Due to this relation between both problems,
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it is straightforward to combine a modal expansion (based on the eigenvalues of the spectral
problem (5.15)) to obtain an accurate approximation of the solution of the time-dependent
problem.

Since the spectral problem (5.15) cannot be associated with a self-adjoint compact
operator, it is not straightforward to show that the eigenmodes {(U k,V k)}k∈N form a
Hilbert basis in L2(Ω) × L2(Ω). Notice that, this set of eigenmodes includes not only
(σk, (U

k,V k)) but also its complex-conjugate pair (σ̄k, (Ū
k, V̄ k)).

However, it will be assumed that the solution of the source model problem (5.13) can
be accurately approximated by a finite (truncated) series of N modes, this is,

(
Û(p)

V̂ (p)

)
=

(
Û(p)

iωÛ(p)

)
=

N∑

k=1

ûk

(
U k(p)
V k(p)

)
. (5.19)

In this case, it is not possible to ensure that {(U k,V k)}Nk=1 is an orthogonal basis with
respect to the L2(Ω)×L2(Ω)-inner product. Consequently, to compute the basis coefficients
~u = (ûk)

N
k=1, it is necessary to compute the dense matrix linear system

A~u = ~f,

where the matrix coefficients, and the coefficients of the right-hand side are given by

Akl = 〈U k,U l〉+ 〈V k,V l〉 = (1 + σkσ̄l) 〈U k,U l〉,
[~f ]k = 〈U ,U k〉+ iω〈U ,V k〉 = (1 + iωσ̄k) 〈U ,U k〉,

and [~u]k = ûk for 1 ≤ k, l,≤ N . Now, if a fixed time is assumed (which can be identified as
the origin of the time axis t = 0), the displacement and the velocity field can be written in
terms of the real part of (5.19), i.e., the real-valued displacement and velocity field, at the
initial time t = 0, are given by

u(p, 0) = Re(U(p)e−iωt)|t=0 = Re(U(p)), (5.20)

v(p, 0) =
∂

∂t
Re(U(p)e−iωt)|t=0 = Re (iωU(p)) . (5.21)

Following the analogous assumption made for the truncated expansion in (5.19), the time-
evolution of the displacement field, in absent of volumetric or surface sources, can be ap-
proximated in terms of the time evolution of a modal expansion:

û(p, t) = Re

(
N∑

k=1

ûke
σktU k(p)

)
, (5.22)

v̂(p, t) = Re

(
N∑

k=1

ûke
σktV k(p)

)
= Re

(
N∑

k=1

ûkσke
σktU k(p)

)
.
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Due to (5.19), the initial conditions (5.20)-(5.21) are approximated by their corresponding
truncated modal expansion û(p, t) = Re(Û(p)) and v̂(p, t) = Re(V̂ (p)) = Re(iωÛ(p)).

Now, since the spectral problem (5.15) takes into account the dissipative effects due to
the absorbing boundaries, the eigenvalues σk are complex-valued, and what is essential, the
real part of σk is negative, and hence, the magnitude of the displacement field u, solution
of (5.18), and its associated pressure field will decay along time.

5.2.3 Displacement formulation with absorbing boundaries and
porous sample

Now, in order to compute the reverberation time in a domain with a sample of porous
material, some boundaries are assumed absorbent, with an associated surface impedance,
and the sample is located on another boundary. That is, let us consider Ω the fluid domain
(air in this case). This domain has four disjoint boundaries, that is, Ω = ΓL ∪ ΓV ∪ ΓI ∪
ΓN where ΓL is the boundary where the acoustic source is located, ΓV are the absorbing
boundaries, ΓI is the boundary where the porous sample is located, and ΓN are the rest
of faces that are considered rigid (see Figure 5.3). A rigid wall condition is imposed on
ΓN since these boundaries are supposed rigid, an impedance condition is imposed on ΓV

to simulate the dissipation effects, and in order to reproduce the absorbing behavior of
the sample, an impedance condition is imposed on ΓI. Then, the source problem can be
written in terms of the displacement field as follows: Given ω > 0, find the complex-valued
displacement field U such that:





−ρFc
2
F∇(divU)− ω2ρFU = 0 in Ω,

U · n = 0 on ΓN,
−ρFc

2
F divU = g on ΓL,

−ρFc
2
F divU = (αv + iωβv)U ·m on ΓV,

−ρFc
2
F divU = (αs + iωβs)U · η on ΓI,

(5.23)

where αv+iωβv is the surface impedance associated with the absorbing boundaries, αs+iωβs

is the surface impedance associated with the sample (obtained by fitting the experimental
data with those computed with the impedance tube method [1]), g is the pressure applied
on the boundary where the source is located, ν is the unit normal vector to the interface
ΓL pointing inwards Ω, n is the unit normal vector to the interface ΓN pointing outwards
Ω, m is the unit normal vector to the interface ΓV pointing outwards Ω and η is the unit
normal vector to the interface ΓI pointing inwards Ω.

Associated with the source problem (5.23), it can be written a linear eigenvalue problem:
Find a sequence of eigenpairs (σk, (U

k,V k)), (U k,V k) 6= (0,0) with k ∈ N and Im(σk) > 0
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Figure 5.3: Scheme of a domain with a fluid in a cavity (Ω), with one piston-like wall (ΓL)
highlighted in cyan, absorbing boundaries (ΓV) highlighted in blue, an absorbing sample
(ΓI) highlighted in green, and rigid boundaries (ΓN) highlighted in red.

such that




−ρFc
2
F∇(divU k) + σjρFV

k = 0 in Ω,
ρFV

k = σkρFU
k in Ω,

U k · n = 0,V k · n = 0 on ΓN,
−ρFc

2
F divU k = 0,−ρFc

2
F divV k = 0 on ΓL,

−ρFc
2
F divU k = αvU

k ·m+ βvV
k ·m on ΓV,

−ρFc
2
F divU k = αsU

k · η + βsV
k · η on ΓI.

(5.24)

Variational formulation

The variational formulation of the source problem (5.23) is stated as follows:
Given ω > 0, g ∈ H−1/2(ΓL) and αv, βv, αs, βs ∈ R with positive values, find U ∈ HΓN

(div,Ω),
satisfying

∫

Ω

ρFc
2
F divU divW dV +

∫

ΓV

αvU ·mW ·m dS + iω

∫

ΓV

βvU ·mW ·m dS

+

∫

ΓI

αsU · ηW · η dS + iω

∫

ΓI

βsU · ηW · η dS − ω2

∫

Ω

ρFU ·W dV =

∫

ΓL

gW · ndS,

(5.25)

for all W ∈ HΓN
(div,Ω).

Now, since the spectral problem (5.24) is linear, and the partial differential equations
have real-valued coefficients, then it is straightforward to check that the eigenmodes satisfy
the following variational formulation:
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Given αv, βv, αs, βs ∈ R with positive values, find a sequence of eigenpairs (σk, (U
k,V k)) ∈

C×HΓN
(div,Ω)×HΓN

(div,Ω), (U k,V k) 6= (0,0), with k ∈ N, such that

−
∫

Ω

ρFc
2
F divU k divW k dV +

∫

Ω

ρFV
k ·Zk dV −

∫

ΓV

αvU
k ·mW k ·m dS

−
∫

ΓV

βvV
k ·mW k ·m dS −

∫

ΓI

αsU
k · ηW k · η dS −

∫

ΓI

βsV
k · ηW k · η dS

= σk

(∫

Ω

ρFV
k ·W k dV +

∫

Ω

ρFU
k ·Zk dV

)
, (5.26)

for all (W k,Zk) ∈ V, where V = HΓN
(div,Ω)×HΓN

(div,Ω).
The existence and uniqueness of the solution of this quadratic eigenvalue problem can be
followed by applying similar arguments to those used in [25].

Computation of the time-dependent solution by a modal approximation

Firstly, the time-dependent system of equations which governs the displacement field in
a domain with absorbing boundaries and an absorbing sample is given as follows:





ρFv̇ − ρFc
2
F∇(divu) = 0 in Ω× [0, T ],

ρFv = ρFu̇ in Ω× [0, T ],
u · n = 0, v · n = 0 on ΓN × [0, T ],

−ρFc
2
F divu = 0, −ρFc

2
F div v = 0 on ΓL × [0, T ],

−ρFc
2
F divu = αvu ·m+ βvv ·m on ΓV × [0, T ],

−ρFc
2
F divu = αsu · η + βsv · η on ΓI × [0, T ],
u(·, 0) = u0 in Ω,
u̇(·, 0) = v0 in Ω,

where u0 and v0 are the displacement and the velocity field at the initial state. Since the
field values of this initial state are generated by the action of the source, both fields are
given by (5.8).

Following the analogous assumption made for the truncated expansion in (5.19), the
time-evolution of the displacement field, in absent of volumetric or surface sources, can be
approximated in terms of the time evolution of a modal expansion:

û(p, t) = Re

(
N∑

k=1

ûke
σktU k(p)

)
,

v̂(p, t) = Re

(
N∑

k=1

ûke
σktV k(p)

)
= Re

(
N∑

k=1

ûkσke
σktU k(p)

)
,

where {(σk, (U k,V k))}Nk=1 are the set of the eigenmodes computed in the spectral prob-
lem (5.24).
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5.2.4 Finite element discretization

In this section, a finite element method is explained. This method was introduced by
Raviart and Thomas [154] to solve those problems which are formulated in displacements,
avoiding the spurious modes which appear in this kind of formulations (see [103] for more
details). Also, the discrete and the matrix formulation of the three problems previously
explained, are described.

Rigid walls

In order to approximate the fluid displacement U ∈ HΓN
(div,Ω) in Section 5.2.1, the

lowest order Raviart-Thomas elements are used. These elements consist in vector valued
functions such as, restricted to each tetrahedron, are incomplete linear polynomials of the
form uh(p1, p2, p3) = (a + dp1, b + dp2, c + dp3), a, b, c, d ∈ C. Then the discrete Raviart-
Thomas space is defined by

Rh(Ω) = {Uh ∈ HΓN
(div,Ω) : Uh|T (p1, p2, p3) = (a+ dp1, b+ dp2, c+ dp3),

a, b, c, d ∈ C, ∀T ∈ Th}, (5.27)

where Th is a regular tetrahedral partition of Ω, that is, Ω =
⋃

T∈Th

T . These vector fields

have constant normal components on each of the four faces of a tetrahedron (see Figure 5.4)
which define a unique polynomial function of this type.

Figure 5.4: Raviart-Thomas finite element

Thus, the functional space HΓN
(div,Ω) in (5.3) can be replaced in the discrete problem

by Rh(Ω). By using the finite element space (5.27), the approximation of the source prob-
lem (5.3) is defined by:
Given ω > 0 and g ∈ H−1/2(ΓL), find the displacement field Uh ∈ Rh(Ω), satisfying

∫

Ω

ρFc
2
F divUh divWh dV − ω2

∫

Ω

ρFUh ·Wh dV =

∫

ΓL

gWh · ndS, (5.28)

for all Wh ∈ Rh(Ω).
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Let ~Uh be the column vector of coefficients of Uh in the basis associated with Rh(Ω),

Uh(p) =
N∑

j=1

[ ~Uh(p)]jWj(p).

So, the matrix formulation of the problem (5.28) is

(
−ω2M + K

)
~Uh = G,

where the coefficients of the mass and the stiffness matrices are, respectively

[M]ij =

∫

Ω

ρFWj ·Wi dV, (5.29)

[K]ij =

∫

Ω

ρFc
2
F divWj divWi dV, (5.30)

and the coefficients of the vector G are given by

[G]ij =

∫

ΓL

gWi · n dS. (5.31)

Now, in order to approximate the U k ∈ HΓN
(div,Ω) in the spectral problem (5.6), also

the lowest order Raviart-Thomas elements are used, and once again, the discrete Raviart-
Thomas space is defined by (5.27). Then, the approximate spectral problem is given as
follows:
Find a sequence of eigenpairs (λk,U

k
h ), U k

h 6= 0, with k ∈ N where λk > 0 and U k
h ∈ Rh,

such that ∫

Ω

ρFc
2
F divU k

h divW k
h dV = λk

∫

Ω

ρFU
k
h ·W k

h dV, (5.32)

for all W k
h ∈ Rh.

If ~U k
h is the column vector of coefficients of U k

h in the basis associated with Rh(Ω),

U k
h (p) =

N∑

j=1

[ ~U k
h (p)]jW

k
j (p),

the problem (5.32) can be written in matrix form as

Kk ~U k
h = λkM

k ~U k
h ,

where the coefficients of the mass and the stiffness matrices are, respectively

[Mk]ij =

∫

Ω

ρFW
k
j ·W k

i dV, (5.33)

[Kk]ij =

∫

Ω

ρFc
2
F divW k

j divW k
i dV. (5.34)
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Absorbing walls

To approximate the fluid displacement U ∈ HΓN
(div,Ω) in Section 5.2.2, the lowest

order Raviart-Thomas elements are used. Thus, the functional space HΓN
(div,Ω) can be

replaced in the discrete problem by Rh(Ω). By using the finite element space (5.27), the
approximation of the problem (5.16) is defined by:
Given ω > 0, g ∈ H−1/2(ΓL), and αv, βv ∈ R with positive values, find the displacement
field Uh ∈ Rh(Ω), satisfying

∫

Ω

ρFc
2
F divUh divWh dV +

∫

ΓV

αvUh ·mWh ·m dS + iω

∫

ΓV

βvUh ·mWh ·m dS

− ω2

∫

Ω

ρFUh ·Wh dV =

∫

ΓL

gWh · ndS, (5.35)

for all Wh ∈ Rh(Ω).

If ~Uh is the column vector of coefficients of Uh in the basis associated with Rh(Ω), the
matrix formulation of the problem (5.35) is

(
−ω2M + iωβvC + (K + αvC)

)
~Uh = 0,

where the coefficients of the mass M and the stiffness K matrices are given by (5.29)
and (5.30), respectively, the coefficients of the damping matrix are given by

[C]ij =

∫

ΓV

Wj ·mWi ·m dS, (5.36)

and the coefficients of the vector G are given by (5.31)

Now, in order to approximate the (U k,V k) ∈ HΓN
(div,Ω) ×HΓN

(div,Ω) in the spec-
tral problem (5.17), also the lowest order Raviart-Thomas elements are used. The discrete
Raviart-Thomas space is defined by (5.27), and the approximation of the spectral problem
is given as follows:
Given αv, βv ∈ R with αv, βv>0, find a sequence of eigenpairs (σk, (U

k,V k)), (U k,V k) 6=(0,0),
with k ∈ N where σk > 0 and (U k

h ,V
k
h ) ∈ V, such that

−
∫

Ω

ρFc
2
F divU k

h divW k
h dV +

∫

Ω

ρFV
k
h ·Zk

h dV −
∫

ΓV

αvU
k
h ·mW k

h ·m dS

−
∫

ΓV

βvV
k
h ·mW k

h ·m dS = σk

(∫

Ω

ρFV
k
h ·W k

h dV +

∫

Ω

ρFU
k
h ·Zk

h dV

)
, (5.37)

for all (W k
h ,Z

k
h) ∈ V, where V = Rh ×Rh.

Let ~U k
h and ~V k

h be the column vectors of coefficients of U k
h and V k

h , respectively, in the
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basis associated with Rh(Ω),

U k
h (p) =

N∑

j=1

[ ~U k
h (p)]jW

k
j (p),

V k
h (p) =

N∑

j=1

[~V k
h (p)]jW

k
j (p).

Then, the matrix formulation of the problem (5.37) is

(
−Kk − αvC

k −βvC
k

0 Mk

)(
~U k
h

~V k
h

)
= σk

(
0 Mk

Mk 0

)(
~U k
h

~V k
h

)
,

where the coefficients of the mass Mk and the stiffness Kk matrices are, respectively, (5.33)
and (5.34), and the matrix Ck is given by

[Ck]ij =

∫

ΓV

W k
j ·mW k

i ·m dS. (5.38)

Absorbing walls and porous sample

To approximate the fluid displacement U ∈ HΓN
(div,Ω) in Section 5.2.3, the lowest

order Raviart-Thomas elements are used. Thus, the functional space HΓN
(div,Ω) can be

replaced in the discrete problem by Rh(Ω). By using the finite element space (5.27), the
approximation of the problem (5.25) is defined by:
Given ω > 0, g ∈ H−1/2(ΓL), and αv, βv, αs, βs ∈ R with positive values, find the displace-
ment field Uh ∈ Rh(Ω), satisfying

∫

Ω

ρFc
2
F divUh divWh dV +

∫

ΓV

αvUh ·mWh ·m dS + iω

∫

ΓV

βvUh ·mWh ·m dS

+

∫

ΓI

αsUh · ηWh · η dS + iω

∫

ΓI

βsUh · ηWh · η dS − ω2

∫

Ω

ρFUh ·Wh dV

=

∫

ΓL

gWh · ndS, (5.39)

for all Wh ∈ Rh(Ω).

If ~Uh is the column vector of coefficients of Uh in the basis associated with Rh(Ω), the
matrix formulation of the problem (5.39) is

(
−ω2M + iω(βs + βv)C + (K + (αs + αv)C)

)
~Uh = G,

where the coefficients of M, C, and K are given by (5.29), (5.36), and (5.30), respectively,
and the coefficients of the vector G are given by (5.31).
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Now, in order to approximate the (U k,V k) ∈ HΓN
(div,Ω)×HΓN

(div,Ω) in the spectral
problem (5.26), also the lowest order Raviart-Thomas elements are used. The discrete
Raviart-Thomas space is defined by (5.27), and the approximation of the spectral problem
is given as follows:
Given αv, βv, αs, βs ∈ R with positive values, find a sequence of eigenpairs (σk, (U

k,V k)),
(U k,V k) 6= (0,0), with k ∈ N where σk > 0 and (U k

h ,V
k
h ) ∈ V, such that

−
∫

Ω

ρFc
2
F divU k

h divW k
h dV +

∫

Ω

ρFV
k
h ·Zk

h dV −
∫

ΓV

αvU
k
h ·mW k

h ·m dS

−
∫

ΓV

βvV
k
h ·mW k

h ·m dS −
∫

ΓI

αsU
k
h · ηW k

h · η dS −
∫

ΓI

βsV
k
h · ηW k

h · η dS

= σk

(∫

Ω

ρFV
k
h ·W k

h dV +

∫

Ω

ρFU
k
h ·Zk

h dV

)
, (5.40)

for all (W k
h ,Z

k
h) ∈ V, where V = Rh ×Rh.

Let ~U k
h and ~V k

h be the column vectors of coefficients of U k
h and V k

h , respectively, in the
basis associated with Sh(Ω), the matrix formulation of the problem (5.40) is

(
−Kk − αvC

k − αsB
k −βvC

k − βsB
k

0 Mk

)(
~U k
h

~V k
h

)
= σk

(
0 Mk

Mk 0

)(
~U k
h

~V k
h

)
,

where the coefficients of Mk, Kk, and Ck are, respectively, (5.33), (5.34), and (5.38), and
the matrix Bk is given by

[Bk]ij =

∫

ΓI

W k
j ·mW k

i ·m dS.

5.3 Methodology based on a full time-dependent dis-

cretization

In this section, the mathematical models and the algorithmic procedure to compute
the reverberation times with a full time-dependent approach is described in detail. This
approach follows the American standard ASTM C423-09 [50] to compute the decay rates
and the reverberation times associated with the alpha cabin. Although there exist another
differences between both the standard ASTM C423-09 and the ISO 354 (see [31] for more
details), the main one is that with the ISO it is necessary to compute the sound pressure
level for a longer period of time (until the sound pressure level has decreased by 60 dB)
and with the American one, it is necessary to compute the sound pressure level only over
some time measurement bands. Hence, the American standard is a local procedure while
the ISO one is based in a global methodology. Let us consider Ω the fluid domain. This
domain has three disjoint boundaries, that is Ω = ΓL ∪ ΓI ∪ ΓN, where ΓL is the acoustic
source, ΓI is the place where the porous sample is located, and ΓN are the rest of faces (see
Figure 5.5 for more details).
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ΓL

ΓN

ΓI

Ω

ν

η

n

Figure 5.5: Scheme of a domain with a fluid in a cavity (Ω), with one piston-like wall
(ΓL) highlighted in cyan, an absorbing sample (ΓI) highlighted in green, and rigid walls
boundaries (ΓN) highlighted in red.

The first step to compute the reverberation time is turned the source on, until time-
harmonic state is reached. For this reason, it is necessary to solve a time-harmonic problem
where a rigid wall condition is imposed on ΓN, a pressure is imposed on the source ΓL, and,
on the place where the sample is located, ΓI, a surface impedance condition is considered.
Then, the source problem and the spectral problem are the same that are defined in Sec-
tion 5.2.2 but instead of having the impedance condition on ΓV, this condition is imposed
on ΓI. Then, the source problem consists in, given ω > 0, finding the complex-valued
displacement field U such that





−ρFc
2
F∇(divU)− ω2ρFU = 0 in Ω,

U · n = 0 on ΓN,
−ρFc

2
F divU = g on ΓL,

−ρFc
2
F divU = (αs + iωβs)U ·m on ΓI,

(5.41)

where g is the pressure applied on the active surface of the loudspeakers, αs + iωβs is the
surface impedance associated with the sample, ν is the unit normal vector to the interface
ΓL pointing inwards Ω, n is the unit normal vector to the interface ΓN pointing outwards
Ω, and m is the unit normal vector to the interface ΓI pointing outwards Ω.
In the same way, the spectral problem can be written as follows:
Find a sequence of eigenpairs (σk, (U

k,V k)), (U k,V k) 6= (0,0), with k ∈ N and Im(σk) > 0
such that




−ρFc
2
F∇(divU k) + σkρFV

k = 0 in Ω,
ρFV

k = σkρFU
k in Ω,

U k · n = 0, V k · n = 0 on ΓN,
−ρFc

2
F divU k = 0, −ρFc

2
F divV k = 0 on ΓL,

−ρFc
2
F divU k = αsU

k ·m+ βsV
k ·m on ΓI.

(5.42)
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Once the time-harmonic state has been reached, the acoustic source is turned off, the
sound pressure level will decrease, and the reverberation time could be computed by mea-
suring the decay rate at each frequency. With this purpose, it is necessary to state the
time-dependent problem, which governs the displacement field inside the alpha cabin. In
order to study the time evolution once the acoustic source is turned off, it is necessary to
solve in the time interval [0, T ] the same time-dependent problem given in Section 5.2.2,
where ΓV is substituted by ΓI. Then, (5.18) results





−ρFc
2
F∇(div u) + ρFü = 0 in Ω× [0, T ],

u · n = 0 on ΓN × [0, T ],
−ρFc

2
F div u = 0 on ΓL × [0, T ],

−ρFc
2
F div u = αsu · η + βsu̇ · η on ΓI × [0, T ],
u(p, 0) = u0 in Ω,
u̇(p, 0) = v0 in Ω,

(5.43)

where u̇ =
∂

∂t
u, ü =

∂2

∂t2
u, and u0 and v0 are the initial conditions for the displacement

and velocity (computed from the time-harmonic source problem), this is, if U is the solution
of the time-harmonic source problem,

u0(p) = Re(U(p)eiωt)|t=0 = Re(U(p)),

v0(p) =
∂

∂t
Re(U(p)eiωt)|t=0 = Re(iωU(p)eiωt)|t=0 = ωIm(U(p)).

Variational formulation

The variational formulation of the source problem (5.42) and the spectral problem (5.41)
are given in (5.16) and (5.17), respectively, but instead of having the integral on ΓV, the
integral is on ΓI, and αv and βv are substituted by αs and βs. Moreover, the variational
formulation of this time-dependent problem can be written as follows:
Given u0 and v0 ∈ HΓN

(div,Ω), αs, βs ∈ R with positive values, find u ∈ C1([0, T ],
HΓN

(div,Ω)) ∩ C2((0, T ),HΓN
(div,Ω)), u(·, 0) = u0, u̇(·, 0) = v0, and satisfying

∫

Ω

ρFc
2
F divu divw dV +

∫

Ω

ρFü ·w dV +

∫

ΓI

αsu · ηw · η dS +

∫

ΓI

βsu̇ ·nw · η dS = 0,

for all w ∈ HΓN
(div,Ω).

5.3.1 Finite element discretization

As it has been explained before, the approximation of (5.16) and (5.17) are given by
(5.35) and (5.37), with the changes mentioned before. Moreover, to approximate the fluid
displacements u ∈ HΓN

(div,Ω) the lowest order Raviart-Thomas elements are used. By
using the discrete Raviart-Thomas space defined in (5.27), the functional space HΓN

(div,Ω)
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can be replaced by Rh(Ω). Considering the associated interpolant operator Ih (see [82] for
further details), the approximation of the time-dependent problem (5.43) can be defined as
follows:
Given u0 and v0 ∈ HΓN

(div,Ω), αs, βs ∈ R with positive values, find uh ∈ C1([0, T ],Rh(Ω))∩
C2((0, T ),Rh(Ω)), uh(·, 0) = Ihu0, u̇h(·, 0) = Ihv0, and satisfying
∫

Ω

ρFc
2
F divuh divwh dV +

∫

Ω

ρFüh ·wh dV +

∫

ΓI

αsuh ·ηwh ·η dS+

∫

ΓI

βsu̇h ·nwh ·η dS = 0,

(5.44)
for all wh ∈ Rh(Ω).

Let ~Uh be the column vector of coefficients of Uh in the basis associated with Rh(Ω),

uh(p, t) =
N∑

j=1

[ ~Uh(t)]jwj(p).

Then, the matrix formulation of the problem (5.44) is

M ~̈Uh + βsC ~̇Uh + (K + αsC) ~Uh = ~0,

where the coefficients of the mass, damping and stiffness matrices are, respectively

[M]ij =

∫

Ω

ρFwj ·wi dV,

[C]ij =

∫

ΓI

wj · nwi · n dS,

[K]ij =

∫

Ω

ρFc
2
F divwj divwi dV.

Numerical scheme

Once a suitable finite element discretization has been introduced for the variational
formulation stated above, a time-marching scheme must be chosen to discretize the time-
dependent problem. Since this problem is second-order in time (acceleration is arising in
the inertial term), a Newmark scheme is used [16]. This scheme is an unconditionally stable
second order method. The system of linear differential equations of second order is

M ~̈U + C ~̇U + K ~U = R,

where M, C, and K are the mass, damping and stiffness matrices, respectively, and R is
the vector of externally applied loads. With this time-marching scheme, displacement and
velocity field are approximated by the following expressions:

~̇U t+∆t = ~̇U t + [(1− δ) ~̈U t + δ ~̈U t+∆t]∆t,

~U t+∆t = ~Ut + ~̇U t∆t+ [(1/2− α) ~̈U t + α ~̈U t+∆t]∆t2,
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where ∆t = T/n is the time step, being n the number of time steps used in the entire
numerical simulation, and α and δ are parameters that can be determined to obtain inte-
gration accuracy and stability. Throughout the present chapter α = 1/4 and δ = 1/2 to
reach second-order accuracy. Solving (5.43) by using the Newmark’s scheme at each time
t, from time 0 to time T , a sequence of approximated displacement fields are obtained, this
is, ~U 0, ~U∆t, ~U 2∆t, . . ., ~UT . Associated with this displacement fields, it is straightforward
to compute their respective approximations of the pressure field π(p, t) at different time
steps, given by

π(p, j∆t) = −ρFc
2
FdivU j∆t(p) for j = 0, . . . , n.

Notice that other time-marching schemes are also utilized to discretize the time-dependent
problem. More precisely, the explicit Noh-Bathe second-order scheme (see [137] for further
details) has been used. Since the numerical results are similar from those obtained with
the Newmark scheme, and the computational cost is much larger than the implicit scheme
(since the Noh-Bathe suffers from a restrictive CFL stability condition), the numerical
results obtained with this time discretization have not been included in this chapter.

5.4 Computation of the absorption values in an alpha

cabin

To quantify the absorption coefficient of a porous sample in an alpha cabin, the reverber-
ation time associated with the empty room and with the room with sample are computed.
Once the different mathematical models which govern the alpha cabin have been explained,
and the time-dependent problem has been solved, two different strategies to compute the
reverberation time, and two expressions to compute the absorption coefficient in the cabin
are described.

5.4.1 Computation of the reverberation time

Let {pm}Mm=1 be a set of fixed spatial points, used to measure the pressure field. The
sound pressure level (SPL measured in decibels [dB]) at these points is given by

SPL(t) = 20 log10

(
1

M

M∑

m=1

|π(pm, t)|
πref

)
,

where πref = 2× 10−5 Pa. Following the international norm ISO 354:2003 [2], the reverber-
ation time of a closed room (in this case, an alpha cabin) is the time trev which satisfies

SPL(trev) = SPL(0)− 60 dB, (5.45)

i.e, it is the time in seconds, that would be required for the sound pressure level to decrease
by 60 dB after the acoustic source has stopped. In fact, factors can be written from the
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displacement field using the mode expansion (5.22):

π(p, t) = −ρFc
2
F divu(p, t) = −ρFc

2
FRe

(
N∑

j=1

ũje
σjt divU j(p)

)
, (5.46)

and consequently,

SPL(t) = 20 log10

(
ρFc

2
F

Mπref

M∑

m=1

∣∣∣∣∣Re

(
N∑

j=1

ũje
σjt divU j(pm)

)∣∣∣∣∣

)
. (5.47)

The right-hand side in (5.45) is straightforward computed, since u(p, 0) = Re(U(p)). In
this case,

SPL(0) = 20 log10

(
ρFc

2
F

Mπref

M∑

m=1

|Re(divU (pm))|
)
. (5.48)

Since the evaluation of the pressure field at points {pm}Mm=1 is straightforward from the
evaluation of the mode expansion, the computation of the reverberation time is immediately
computed by solving the non-linear equation inserting (5.47) and (5.48) in (5.45), and using
the truncated modal expansion (5.22) to approximate the SPL level.

Fitting wall impedance in terms of experimental reverberation times The ex-
perimental reverberation time in the alpha cabin is obtained following these steps. In
the following procedure, it is assumed ideally that each measurement can be performed
independently for a fixed set of frequency values {ωn}Nn=1:

(A) One of the loudspeakers is turned on (exciting the alpha cabin at a fixed frequency
value ωn with 1 ≤ n ≤ N), and SPLn,k(t) for k = 1 is measured from the pressure
values at the microphone locations {pm}Mm=1. Then, this loudspeaker is turned off,
and another one is turned on. The procedure is repeated for each one of the L
loudspeakers obtaining SPLn,k(t) for k = 1, . . . , L.

(B) By using all the SPLn,k(t) measured for k = 1, . . . , L, the averaged SPLn can be
computed as follows:

SPLn(t) =
1

L

L∑

k=1

SPLn,k(t) =
1

L

L∑

k=1

(
20 log10

(
1

M

M∑

m=1

|πn,k(pm, t)|
πref

))
, (5.49)

where πn,k is the pressure field measured when the loudspeaker k is turned on (working
at a fixed frequency ωn) and the rest ones is turned off.

(C) Finally, the experimental reverberation time trev(ωn) is computed solving (5.45),
where SPL(trev(ωn)) has been computed by means of the averaged SPLn values (5.49).
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The analogous procedure has been also utilized to compute the numerical approximation
of the reverberation time t̂rev(ωn, αv, βv), but in this numerical version of the procedure,
the pressure field πk(xm, t) has been approximated by the pressure field associated with the
truncated modal expansion of the displacement field (see (5.46)).

Now, in order to find the values of αv and βv associated with the vertical walls of the
alpha cabin, the experimental values of the reverberation time in the empty cabin have
been used. The fitting problem is stated as follows:
Find the values α∗v ≥ 0 and β∗v > 0, such that minimize the difference between the experi-
mental and the numerical reverberation times, i.e.,

(α∗v, β
∗
v) = arg min

αv≥0,βv>0

N∑

n=1

|trev(ωn)− t̂rev(ωn, αv, βv)|2

N∑

n=1

|trev(ωn)|2
.

Remark 5.4.1. Although in real-world materials both coefficients αv and βv actually depend
on ω, in many cases, the impedance can be approximated by using a viscoelastic Kelvin-Voigt
model [163], that is, neither αv nor βv have a arbitrary dependence of ω (see Section 1.3.4
in Chapter 1). The parameters αv and βv are associated with the elastic and the viscous
contribution of the walls.

5.4.2 Computation of the absorption value

Once it has been explained how to compute the reverberation time in the cabin with the
porous sample and in the empty cabin, the absorption coefficient of a porous material in an
alpha cabin can be defined by using, for example, Sabine formula, following the American
standard ASTM C423-09 [50] or the international norm ISO 354:2003 [2].

Sabine formula

Following Sabine formula [160], the absorption coefficient of the sample is given by

α =
6 ln(10)L

cF

(
1

trev

− 1

tempty

)
, (5.50)

where cF is the air sound speed, L is the typical length of the cabin (space between two
consecutive reflections), and trev and tempty are respectively the time required to reduce in
60 dB the sound pressure level at some spatial point locations with and without absorbing
specimen. The typical length of the cabin is given by

L =

{
V/S at normal incidence,
4V/S at diffuse field,

(5.51)

where V is the total volume of the alpha cabin and S is the surface occupied by the
absorbing test specimen. Notice that the floor of the alpha cabin is assumed rigid.
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Millington formula

Alternatively, instead of computing the absorption coefficient using the simpler Sabine
formula, it can be computed with the classical Millington formula [127], which is more
robust for absorption values close to zero (see [68] for more details)

ln(1− α) =
6 ln(10)L

cF

(
1

trev

− 1

tempty

)
, (5.52)

where cF is the air sound speed, L is the typical length of the cabin given by (5.51), and trev

and tempty are respectively the time required to reduce in 60 dB the sound pressure level at
some spatial point locations with and without absorbing specimen. Again, the floor of the
alpha cabin is assumed rigid.

Remark 5.4.2. The numerical results obtained with this numerical methodology are far
from being accurate. In fact, very low absorption values are reported, which are not com-
parable with the experimental measurements. The origin of this lack of accuracy in the
numerical results has been identified, and it has been related to two main causes: (a) the
computation of the eigenmodes of the cabin is not reliable, since for a fixed range of fre-
quency values, it cannot be ensured that all the eigenmodes have been taking into account in
the modal expansion; and (b) the computation of SPL values associated with the numerical
evaluation of the pressure field at a given time value could lead to unrealistic reverberation
time values, which does not take into account the global decay of the pressure field.

To overcome these two main drawbacks, a new numerical methodology has been con-
sidered, replacing the modal expansion by a full time-dependent discretization, and using
the ASTM approach to compute the decay rates. Consequently, the reverberation times
are based on local average of the pressures values in different time windows.

5.4.3 Computation of decay rates

Once the time-dependent problem is solved at each discretization time step tj = j∆t,
as it is proposed by the ASTM standard [50], local averages of the sound pressure level are
computed in time windows of δt length. The set of averages of the sound pressure level
{Leq(0), Leq(1), . . . , Leq(Md)} are computed as follows:

Leq(m) =
1

M

M∑

j=1

(
10 log10

∫ (m+1)δt

mδt

|π(pj, t)|2
π2

ref

dt

)
, for m = 0, . . . ,Md − 1, (5.53)

where M is the number of microphones, πref = 2 × 10−5 Pa is the reference pressure, and
δt is the time windowing length. Since the pressure field is only approximated at the time
steps j∆t, the time integral involved in the local averages is approximated by means of a
composite Simpson’s rule with time step ∆t.
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As it is recommended by the ASTM standard, the decay rate is the absolute value of
the slope of the linear, first order regression on the average sound pressure level values,
which is computed by using the following expression:

drev =
6

Md(M2
d − 1)δt

[
(Md + 1)

Md−1∑

i=0

Leq(i)− 2

Md−1∑

i=0

iLeq(i)

]
,

being Md the number of computed Leq. Once the decay rate associated with each reverber-
ation time is computed, the reverberation time can be computed as trev = 60/drev.

Additionally, two other numerical alternatives have been considered for computing the
decay rates associated with the time evolution of the pressure field: the first one consists
in the computation of the linear regression of the sound pressure level at every time step
tj = j∆t, without taking into account the local averages described above; the second one
consists in the computation of the linear regression of the root-mean-square of the pressure
field in the whole alpha cabin at every time step, not restricting the pressure values only
to the microphone positions (as it has been considered in the other two strategies). These
strategies, together with those previously described, are used in the numerical results.

5.5 Numerical results

In this section some numerical results are shown to illustrate the methodology to com-
pute the absorption coefficient in an alpha cabin. Some simulations in two-dimensional and
three-dimensional domains are performed, and the geometry used in each case is described.

5.5.1 Two-dimensional simulations

First of all, some two-dimensional simulations are performed. This section includes the
description of the used geometry and the numerical results with two different datasets:
manufactured data to validate the code, and experimental data of a real-world fibrous
material provided by the same company that has been mentioned in Chapter 1.

Geometry

For the two-dimensional simulations, a rectangular domain Ω = [0, 0]× [1, 0.75] is con-
sidered, with an absorbing wall (ΓI), a piston-like wall (ΓL), and two rigid walls (ΓN).
There are six microphones located within Ω in the positions pi = (0.1 × (1 + i), 0.1) with
i = 1, . . . , 6. A scheme of this domain is shown in Figure 5.6.

Manufactured data

In the first two-dimensional simulation, a manufactured material is considered. The
experimental data are the frequency response of the absorption coefficient at diffuse field
of this material. To compute this coefficient by using the methodology described in this
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Ω

ΓI

ΓN

ΓL

p4p3p2p1 p6p5

Figure 5.6: Fluid in a rectangular domain Ω, where Ω = [0, 0]× [1, 0.75], with one absorbing
wall (ΓI) highlighted in green, one piston-like wall (ΓL) highlighted in cyan, and two rigid
walls (ΓN) highlighted in red. The six microphones are located in p1, . . . ,p6.

chapter, the time-harmonic problem (5.41) and the time-dependent problem (5.43) should
be solved. Thus, the time evolution of the pressure field inside the domain can be obtained,
the reverberation time can be computed, and the absorption coefficient of the material can
be obtained.

To solve the problems previously mentioned, it is necessary to know the surface impedance
of the absorbing material under study. In this case, a material with a surface impedance
smaller than the air is considered, that is, it is chosen Z(ω) = αs + iωβs with αs = 0 Ns/m3

and βs = 206.21 Ns/m3. Considering these values, the time-harmonic problem (5.41) is
solved, and its solution is used as initial condition for the time-dependent problem (5.43).
The considered frequency range is from 400 to 1000 Hz in third-octave (400, 500, 630, 800,
and 1000 Hz). Then, the pressure field at the points where the microphones are located
can be measured, and the sound pressure level can be computed at each angular frequency
given. To calculate the reverberation time, the two strategies described in this chapter are
followed: to use the sound pressure level (SPL) values or the Leq-averages. The left plot of
Figure 5.7 shows the values of the SPL obtained using (5.49), with a blue line, the values
of the SPL computed using the root-mean-square (L2-norm) of the pressure field instead of
the pointwise evaluation of the pressure field at the microphone locations, with a red line,
the regression line calculated globally by using the SPL data at every time step, with a
cyan line, and the regression line computed globally by using the L2-norm of the pressure
field, with a yellow line. The right plot of Figure 5.7 shows the values of the SPL obtained
using (5.49), with a blue line, and the regression lines computed considering the values of
Leq-averages obtained with the expression (5.53), in some windowing time intervals, with
a magenta line. The dashed black line in both plots represents the point where the initial
SPL has decreased by 60 dB. As it can be observed in the right plot in Figure 5.7, only
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Figure 5.7: Sound pressure level at 1000 Hz of a manufactured material, computed by con-
sidering the impedance surface Z(ω) = iωβs+αs, with αs = 0 Ns/m3 and βs = 206.21 Ns/m3.
Left: values of the SPL computed using (5.49) (blue line), and those obtained by using the
L2-norm of the pressure field (red line), regression line calculated globally by using the
SPL data at every time step (cyan line), and regression line computed globally by using
the L2-norm of the pressure field (yellow line). Right: values of the SPL computed by
using (5.49) (blue line), and regression lines obtained from the values of Leq calculated
with the expression (5.53), where the windowing time interval has length δt = 0.00439 s
(magenta line). The dashed black line in both plots represents the point where the initial
sound pressure level has decreased by 60 dB.

four values of Leq are used, the windowing time interval has length δt = 0.00439 s, and the
final time is T = 0.014 s. As it can be observed in the left plot in Figure 5.7, a larger time
interval is necessary to achieve that the initial SPL decreases 60 dB, that is, the time evo-
lution problem should be studied at least until the solid blue line crosses the dashed black
line, leading to an increase in the computational cost. As it has been explained previously,
the absorption values may be obtained using the SPL, or the values of Leq-averages. In
Figure 5.8, the absorption values at diffuse field and at normal incidence calculated using
Sabine formula (5.50) and the Millington formula (5.52) are shown. In the left plot, the
absorption values are obtained from the values of SPL, and in the right plot, the absorption
values are computed from the values of Leq-averages. The numerical results are compared
with the experimental data.

As it can be observed in both plots of Figure 5.8, Sabine formula overestimates the
absorption coefficient while Millington formula obtains values closer to the experimental
ones. In fact, under normal assumptions, absorption values are predicted accurately by
using Millington formula, with relative errors εSPL = 10.77% and εLeq = 1.55%. As it has
been explained before, the error obtained with the Leq-averages is smaller than the obtained
by considering the SPL values.
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Figure 5.8: Absorption coefficient values of a manufactured material with impedance surface
Z(ω) = iωβs + αs, where αs = 0 Ns/m3 and βs = 206.21 Ns/m3, computed by using the
Sabine formula (5.50) and the Millington formula (5.52), at normal incidence (solid lines)
and diffuse field (dashed lines). The absorption values have been obtained by using the
values of SPL (left plot) and the values of Leq (right plot).

Simulation with a fibrous sample

In this two-dimensional simulation a material made from polypropylene fibers with thick-
ness h = 20 mm is considered. This material is the sample 3 characterized in Section 1.7.1
in Chapter 1. As in the manufactured case, to solve the time-harmonic problem (5.41)
and the time-dependent one (5.43), it is necessary to compute the values of the surface
impedance associated with the material, Z(ω) = αs + iωβs, for each angular frequency ω.
This sample is a fibrous material, and, as it has been described in Chapter 1, it may be
modeled following a Miki model. Then, by using the fitting problem (1.16) with M = 1, the
obtained optimal values are φ = 0.83, σ = 2.29 × 104 Nm−4s, α∞ = 1.02, and M ′′ = 0.95,
and the relative error is ε = 4.05% (see Section 1.7.1 in Chapter 1 for more details about
the fitting of this material). With these optimal values, the surface impedance Zs of the
material at each angular frequency ωj may be computed (recall that if the porous material is
modeled following a fluid-equivalent model, Zs(ωj) = Z(ωj) coth(ik(ωj)h), where Z, k, and
h are the characteristic impedance, the wave number, and the thickness of the material).
Then, the fitting problem consists in finding α∗s > 0 and β∗s > 0 such as

(α∗s , β
∗
s ) = arg min

αs>0, βs>0




n∑

j=1

|Zs(ωj)− Zanl(ωj, αs, βs)|2

n∑

j=1

|Zs(ωj)|2



, (5.54)



5.5. Numerical results 249

where Zanl(ωj, αs, βs) = αs + iωjβs is the computed surface impedance. The fitting prob-
lem (5.54) has been solved by using a least-square method with initial guess (α0

s , β
0
s ) =

(100, 10), the obtained optimal values are αs = 6622970.608 Ns/m3 and βs = 293.047 Ns/m3,
and the relative error in the fitting is ε = 1.74%. Figure 5.9 shows the fitting results. Left

Figure 5.9: Left: Absorption coefficient of a material made from PP fibers (sample 3 of
Chapter 1). The solid line represents the experimental values and the dashed line the
optimized ones. The material is modeled by using the Miki model, and the optimal values
of the fitting problem (1.16) are φ = 0.83, σ = 2.29 × 104 Nm−4s, α∞ = 1.02, and M ′′ =
0.95 (see Chapter 1 for more details). Right: Real (red lines) and imaginary (blue lines)
parts of the fitting of the input surface impedance of the fibrous material. Solid lines
represent the experimental data and the dashed lines correspond with the values computed
considering the optimal values of the fitting problem (5.54), αs = 6622970.608 Ns/m3 and
βs = 293.047 Ns/m3.

plot shows the comparison between the experimental absorption coefficient (solid line) and
the computed one with the optimal values stated above (dashed line). Right plot shows
the real and the imaginary parts of the experimental values of the input surface impedance
of the fibrous material (solid lines) and the computed ones with the values of αs and βs

obtained above.
By using the values of αs and βs obtained with the fitting problem (5.54), the time-

harmonic problem (5.41) can be solved and its solution can be used as initial condition for
the time-dependent problem (5.43). Then, the pressure at the points where the microphones
are located can be measured, and the SPL can be computed at each angular frequency. As
it has been described through this chapter, to measure the reverberation time two different
strategies may be considered: to use the SPL values or to use the Leq-averages. As in the
previous example, the frequency range considered is from 400 to 1000 Hz in third-octave
(400, 500, 630, 800, and 1000 Hz). The left plot of Figure 5.10 shows the values of the SPL
computed by using (5.49), with a blue line, the values of the SPL obtained by using the
root-mean-square (L2-norm) of the pressure field instead of the pointwise evaluation of the
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Figure 5.10: Sound pressure level at 1000 Hz of a material made from polypropylene fibers
with thickness h = 20 mm (sample 3 of the Chapter 1). The surface impedance values are
Z(ω) = αs + iωβs, with αs = 6622970.608 Ns/m3 and βs = 293.047 Ns/m3. Left: values of
the SPL computed by using (5.49) (blue line), values of the SPL obtained using the L2-
norm of the pressure field (red line), regression line calculated globally using the SPL data
at every time step (cyan line), and regression line computed globally using the L2-norm of
the pressure field (yellow line). Right: values of the SPL computed considering (5.49) (blue
line) and regression lines computed by using the values of Leq-averages calculated with the
expression (5.53) in some windowing time intervals (magenta line). The dashed black line
in both plots represents the point where the initial sound pressure level has decreased by
60 dB.

pressure field at the microphone locations, with a red line, the regression line computed
globally by using the SPL data at every time step, with a cyan line, and the regression line
calculated globally using the L2-norm of the pressure field, with a yellow line. The right
plot of Figure 5.10 shows the values of the SPL obtained using (5.49), with a blue line,
and the regression lines calculated by using the values of Leq-averages computed with the
expression (5.53), in some windowing time intervals, with a magenta line. The dashed black
line in both plots represents the point where the initial sound pressure level has decreased
by 60 dB. In the right plot of Figure 5.10, it can be observed that only eight values of Leq

are used. The time interval has length δt = 0.00439 s as in the previous example, since
both simulations use the same mesh, and the final time is T = 0.030 s. The left plot shows
that this amount of seconds is not enough to compute the reverberation time from the SPL
values what leads to an increase in the computational time and thereby an increase in the
computational cost.

Now, the absorption values have been computed. In Figure 5.11 the absorption values
obtained using the Sabine expression (5.50) and the Millington expression (5.52) are shown.
In both plots, the absorption values are computed at normal incidence, i.e., by using the
typical length L = V/S (5.51), and the results are compared with the experimental data
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from the Kundt’s tube and at diffuse field, i.e., by using the typical length L = 2V/S (5.51),
and the results are compared with the experimental data from the alpha cabin. In the left
plot, the absorption values are computed by using the values of SPL, and in the right plot,
the absorption values are obtained by using the values of Leq.

Figure 5.11: Absorption coefficient values of a real fibrous material with impedance surface
Z(ω) = iωβs + αs, where αs = 6622970.608 Ns/m3 and βs = 293.047 Ns/m3, computed by
using the Sabine formula (5.50) and the Millington formula (5.52), at normal incidence and
at diffuse field. The absorption values have been obtained by using the values of SPL (left
plot) and the values of Leq-averages (right plot). The values computed at normal incidence
are compared with the experimental data measured in the Kundt’s tube, and the values
computed at diffuse field are compared with the experimental data measured in the alpha
cabin.

As it can be observed in both plots of Figure 5.11, at normal incidence, Sabine formula
overestimates the absorption coefficient while Millington formula predicts the absorption
values accurately with relative errors εSPL = 11.57% and εLeq = 4.39%. This behavior of
Sabine formula is well-known (in fact, [91] shows that Millington formula gives more accu-
rate results than Sabine one). Moreover, taking into account that in a well-designed alpha
cabin, the sound field approximates a diffuse field, the absorption coefficients measured in
the alpha cabin should be consistent with the values computed in the Kundt’s tube [143].
As can be observed in Figure 5.11 at diffuse field, both Sabine and Millington formulas
underestimate the absorption coefficient, although both have the same trend as those com-
puted at normal incidence, what shows that the proposed methodology is coherent with
the literature.

5.5.2 Three-dimensional simulation

In this section, a three-dimensional simulation in the alpha cabin has been performed.
This section includes the description of the geometry of the alpha cabin under consideration,
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and the numerical results using as experimental data the absorption coefficient of a real-
world fibrous material provided by the same company that it is mentioned in Chapter 1,
measured in an alpha cabin.

Geometry

In Figure 5.12, the geometry of the alpha cabin used to measure the experimental data
is shown. This alpha cabin has two non-parallel walls, a volume of 4.5 m3, and the internal

Figure 5.12: Geometry of the alpha cabin. The six microphones are located at the red
points.

area is 17 m2. This cabin is smaller than the standard one [6], what could lead us to
obtain not accurate enough experimental measurements because these dimensions could
not ensure the diffusivity of the field inside the cabin. There are three loudspeakers, two
on the bottom and one on the top of the cabin, six microphones, located at the red points
of the Figure 5.12, and three rectangular diffusers used to achieve a satisfactory diffusion
of the field inside the cabin.

In order to perform the numerical simulations, some simplifications in the cabin are
considered, such as to replace the loudspeakers by hexahedrons, not to consider the double
walls of the cabin, or to eliminate the sample holder, placing the sample on the floor (see
Figure 5.13 to check the simplifications). It is supposed that the hexahedrons have an active
face whose movement is like a piston, and the rest of them are non active faces.
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Figure 5.13: Simplified geometry of the alpha cabin used in the numerical simulations.

Simulation with a fibrous sample

The sample under consideration is the same one than in the 2D simulation (see Sec-
tion 5.5.1): a material made from polypropylene fibers. Once again, in order to solve the
time-harmonic problem (5.41) and the time-dependent problem (5.43), it has been con-
sidered that the surface impedance values of the material are Z(ω) = αs + iωβs, with
αs = 6622970.608 Ns/m3 and βs = 293.047 Ns/m3, computed as it has been explained in
Section 5.5.1. By using these values, the sound pressure level can be computed at each
angular frequency, and the reverberation time may be calculated by using the SPL values,
or considering the Leq-averages.

The left plot of the Figure 5.14 shows the values of the SPL obtained using (5.49), with a
blue line, the values of the SPL using the root-mean-square (L2-norm) values of the pressure
field instead of the pressure field computed pointwise at the microphone locations, with a
red line, the regression line calculated globally by using the SPL data at every time step,
with a cyan line, and the regression line computed globally by using the L2-norm of the
pressure field, with a yellow line. The right plot of the Figure 5.14 shows the values of the
SPL obtained using (5.49), with a blue line, and the regression lines computed considering
the values of Leq obtained with the expression (5.53), in some windowing time intervals,
with a magenta line. Once again, the dashed black line represents the point where the
initial sound pressure level has decreased 60 dB. In this example, only six values of Leq are
used, the windowing time interval has length δt = 0.0004 s, and the final time is T = 0.020 s

Once the SPL has been calculated, the absorption values may be computed. In the left
plot in Figure 5.15, the absorption values computed by using the SPL values, and in the right
plot, those obtained with the values of Leq are shown by using the Sabine expression (5.50),
and the Millington one (5.52). These values are computed at diffuse field, i.e., by using
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Figure 5.14: Sound pressure level at 1000 Hz, computed by using the impedance coefficients
αs = 6622970.608 Ns/m3 and βs = 293.047 Ns/m3. Left: values of the SPL obtained with
the expression (5.49) (blue line), values computed by using the L2-norm of the pressure
field (red line), the regression lines calculated globally by using the SPL data at every
time step (cyan line), and regression line computed globally obtained by using the L2-norm
of the pressure field (yellow line). Right: values of the SPL computed considering the
expression (5.49) (blue line), and regression lines obtained from the values of Leq calculated
with the expression (5.53), where the windowing time interval has length δt = 0.0004 s
(magenta line). The dashed black line represents the point where the initial SPL has
decreased by 60 dB.

the typical length L = 4V/S (5.51), and the numerical results are compared with the
experimental data measured in the alpha cabin. As in the 2D simulations, Millington
formula gives more accurate results than Sabine one, and both Sabine and Millington
diffuse predictions are consistent with the Kundt’s tube measurements what, once again,
validate the proposed methodology.

5.6 Conclusions

In this chapter, a methodology to compute the absorption coefficient of porous materials
at diffuse field in an alpha cabin has been proposed. This methodology is based on the
standard ASTM C423-09 [50] to calculate the sound pressure level decay within the cabin.
First of all, a discussion about the model which governs the behavior of the cabin is shown.
Once the model is chosen, the time evolution of the pressure field in the cabin is studied.
The time-dependent problem has been tackled in two different ways: with a methodology
based on modal computations, and with a methodology based on a full time-dependent
discretization, concluding than the second approach is the most suitable for describing
the problem under consideration. Since to measure the absorption coefficient in the cabin
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Figure 5.15: Absorption coefficient values of a real fibrous material with impedance surface
Z(ω) = iωβs + αs, where αs = 6622970.608 Ns/m3 and βs = 293.047 Ns/m3, computed by
using the Sabine formula (5.50) and the Millington formula (5.52) at diffuse field compared
with the experimental data measured in the alpha cabin. The absorption values have been
obtained by using the values of SPL (left plot) and the values of Leq (right plot).

it is necessary to measure the changes in the values of the reverberation time due to the
placement of the sample in the cabin, a time-dependent problem is solved, the reverberation
time is measured, and the absorption coefficient at diffuse field is calculated by using Sabine
formula [160], or Millington one [127].

To illustrate the methodology, some numerical results in two-dimensional and three-
dimensional domains have been performed. To validate the method, some two-dimensional
simulations have been done, using manufactured data, and showing a good agreement be-
tween the computed results and the experimental ones. As is well-known [91], the Millington
formula is more accurate than the Sabine one. Also, some two-dimensional simulations have
been performed with a fibrous material. In this case, the numerical results at normal inci-
dence are consistent with the experimental data measured in the Kundt’s tube. However,
it does not happen the same with the results at oblique incidence. These results are quite
different with the experimental data measured in the alpha cabin. Following [143], the
absorption values measured in the tube and the cabin should be consistent. This does not
happen with the experimental data, but with the computed data do. Something similar is
shown with the three-dimensional simulations: the computed data show good agreement
with the Kundt’s tube data but not with the alpha cabin. Since the Kundt’s tube values
are reliable, this leads us to think about the trustworthiness of the experimental data. This
bad agreement could be caused by several reasons: the cabin used in this chapter is smaller
than the standard one, and maybe this does not allow us to have a diffuse field, some build-
ing defects of the cabin (in [92], there are more details about all situations where a diffuse
field can be expected or not). But, as it has been described in [65], often appear many dis-
crepancies between the absorption values of a sample obtained from different laboratories,
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or even from the same one due to the difficulties to reproduce the same conditions in the
cabin, especially at low frequencies so the bad agreements could happen due to the lack of
reproducibility of this kind of rooms.
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6.1 Introduction

Floating floors have been widely studied to improve the impact sound insulation in
buildings [57, 99, 104, 133, 165]. There is a wide range of materials used as underlayers,
such as mineral and glass wools, polyurethane or polyethylene foams, synthetic fibers, or
recycling materials as carpet waste, wood waste, or tire recycling [8, 158, 165]. The dy-
namic stiffness of these materials is fundamental not only to quantify the reduction of noise
propagation but also to predict the reduction of the impact of the sound pressure level of a
material. The dynamic stiffness per unit area can be measured using different measurement
excitation methods, such as impact hammer, white noise, ESS signal, or MLS signal [87].

The standard ISO 9052-1 [3] is used to determine the dynamic stiffness of elastic ma-
terials used under floating floors, which is one of the parameters used to determine the
acoustic insulation of these floors. However, such value is not directly related to the elastic
coefficients typically used in the Hooke’s linear model, such as the Young modulus, the
Poisson coefficient, or the loss factor. Hence, an additional numerical or experimental pro-
cedure is required to determine from a quantitative point of view those material coefficients.
In the present work, a numerical methodology based on a hierarchical modeling approach
(introduced in [49]) is proposed, using only those experimental data obtained from the stan-
dard ISO 9052-1 framework. Consequently, the purpose of this chapter is focused on the
computation of some elastic coefficients of viscoelastic and poroelastic materials by using a
hierarchy of models.

The work described in this chapter is a collaboration with Jesús Carbajo, Pedro Poveda,
and Jaime Ramis from the Department of Physics, System Engineering and Signal The-
ory of the University of Alicante, and the available experimental data are provided by the
research group to which they belong. This chapter is organized as follows: Section 6.2
describes the methodology to compute the dynamic stiffness of a solid material following
the standard ISO 9052-1 [3]. The design of the hierarchy of models is described in Sec-
tion 6.3. Then, the different models used in the present chapter are discussed: the mode
decomposition used for the compressional waves of a viscoelastic model is introduced in
Section 6.4, the time-dependent one- and three-dimensional viscoelastic models are intro-
duced in Section 6.5, and the full three-dimensional poroelastic model is described in detail
in Section 6.6, respectively, including the variational formulation of the problem, and the
finite element discretization. Section 6.8 presents some numerical results to validate the
code as well as some simulations with viscoelastic samples. Finally, Section 6.9 summarizes
the main conclusions of this chapter.

6.2 Experimental determination of the dynamic stiff-

ness using the standard ISO 9052-1

Definition 6.2.1. In a linear static regime, the static stiffness per surface unit s′ associated
with an elastic material supporting a compressional motion is the ratio between the applied
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force, and the responsive displacement due to this force, this is, it is given by

s′ =
F/S

∆d
,

where F is the force perpendicular to the sample, S is the surface of the sample, and ∆d is
the dynamic change in the thickness of the elastic material.

However, the determination of the apparent dynamic stiffness per surface unit of a test
sample is made by a dynamic resonance method, in which the resonance frequency of the
fundamental vertical vibration is measured in a mass-spring system, where the mass is the
load plate, and the sample of the elastic material being tested is acting as spring (with or
without damping effects).

To perform this experimental test, the elastic sample is placed between the base and the
load plate. The load plate is made of steel, and has dimensions (200±3) mm ×(200±3) mm.
Both the base and the load plate must be rigid enough to avoid bending waves within the
frequency range of interest. The excitation is made following the setting shown in Figure 6.1.
The total load on the test sample is 8 kg. Excitation and measurement devices must be
applied in such a way that only vertical oscillations occur.

Hammer

Mass plate

Elastic sample

Accelerometer

Figure 6.1: Setup used to measure the dynamic stiffness of an elastic sample following the
standard ISO 9052-1 [3].

In order to obtain the resonance frequency, the acceleration of the plate is measured by
means of an accelerometer, located in the center of the plate, and the plate is struck by
a hammer equipped with an accelerometer in an area around the accelerometer, in order
to avoid undesirable effects. Hence, from the measured input time series (force due to
the hammer) and output time series (acceleration on the top surface of the steel plate),
a standard spectral procedure can identify the most relevant frequency contained in such
time series, which will be read as the resonance frequency.

Definition 6.2.2. The apparent dynamic stiffness of the sample per surface unit, s′r is
defined by

s′r = 2πm′tωr,
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where m′t is the total mass per surface unit used during the test, and ωr is the experimental
resonance angular frequency.

Typically, if the material is assumed porous, and it has a high airflow resistivity, then
s′ = s′r.

6.3 Design of the hierarchy of models

The definition of a hierarchy of models involves different assumptions, from the most
simplistic ones to those where the most sophisticated details are taking into account in the
model. Hence, the levels of accuracy at each item of the hierarchy are ruled mainly by
the assumptions made at each model. In this proposed approach, the differences among
the mathematical models are based on different used constitutive laws (viscoelastic and
poroelastic models), the one- and three-dimensional configurations, and neglecting or not
the shear modes, which possibly are contributed to the solution of the model. In summary,
size different mathematical assumption settings are used in the hierarchical modeling ap-
proach. Table 6.1 summarizes the items of the proposed modeling approach, where the
model number indicates the order in the hierarchy of models.

Model Description

Model0 Time-dependent 0-dimensional mass-spring model
Model1 Uni-modal compressional solution of a viscoelastic model
Model2 Multi-modal compressional expansion of a viscoelastic model
Model3 Time-dependent 1-dimensional viscoelastic model
Model4 Time-dependent 3-dimensional viscoelastic model
Model5 Time-dependent 3-dimensional poroelastic model

Table 6.1: Model number and description of each item in the hierarchical modeling ap-
proach.

The first level in the hierarchy, namely Model0 has been already described in Section 6.2,
since it is the model used for the computations included in the standard ISO 9052-1. The
mode decomposition used for the compressional waves of a viscoelastic model (involved
in Model1 and Model2) is introduced in Section 6.4, the time-dependent one- and three-
dimensional viscoelastic model (Model3 and Model4) are introduced in Section 6.5, and the
full three-dimensional poroelastic model (Model5) is described in detail in Section 6.6.

6.4 Modal decomposition of compressional solutions

of a viscoelastic model

Since the geometry of the experimental setting can be read as a simple Cartesian product
of intervals, a classical separation of variables procedure can be used to compute the com-
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pressional modes in the perpendicular direction to the planar contact surfaces of the steel
plate and the elastic sample. With this purpose, it is assumed that the contact interfaces
between the rigid wall, the elastic sample and the steel plate are placed on

ΓL = {(x, y, z) ∈ R3 : (x, y) ∈ (0, L)2, z = 0},
ΓC = {(x, y, z) ∈ R3 : (x, y) ∈ (0, L)2, z = d},
ΓN = {(x, y, z) ∈ R3 : (x, y) ∈ (0, L)2, z = d+ L}.

If a linear elastic regime is also supposed for the time-harmonic compressional vibrations
of the steel plate and the elastic sample, the coupled conditions written as follows:

ΣE(UE)n =0 on ΓL,

UE · n =UV · n on ΓC,

ΣE(UE)n · n =ΣV(UV)n · n on ΓC,

UV · n =0 on ΓN,

where ΣE(UE) and ΣV(UV) are the time-harmonic stress tensor in the steel plate and in
the viscoelastic solid, respectively with UE and UV the displacement fields in the steel
plate and in the viscoelastic solid, respectively.

Now, it is assumed that the excitation forces on the top surface of the steel plate can
be read as a uniform (and so constant) force acting only on compression. In this case, the
displacement fields are given by

UE =(A1e
ikEz + A2e

−ikEz)e3,

UV =(B1e
ikVz +B2e

−ikVz)e3.

Hence, to compute the resonance frequencies of the mechanical coupled system, it is required
to find the non-trivial solutions of the following linear system:





ikE(2µE + λE)A1 − ikE(2µE + λE)A2 = 0,
eikEdA1 + e−ikEdA2 − eikVdB1 − e−ikVdB2 = 0,

ikE(2µE + λE)eikEdA1 − ikE(2µE + λE)e−ikEdA2

−ikV(2µV + λV)eikVdB1 + ikV(2µV + λV)e−ikVdB2 = 0,
eikV(d+L)B1 + e−ikV(d+L)B2 = 0.

Taking into account kE = ω
cE

, kV = ω
cV

, cE =
√

2µE+λE
ρE

and cV =
√

2µV+λV
ρV

, the matrix

description of the above linear system is given by




ωcEρE −ωcEρE 0 0

e
i ω
cE
d

e
−i ω

cE
d −ei

ω
cV
d −e−i

ω
cV
d

ωcEρEe
i ω
cE
d −ωcEρEe

−i ω
cE
d −ωcVρVe

i ω
cV
d
ωcVρVe

−i ω
cV
d

0 0 e
i ω
cV

(d+L)
+e
−i ω

cV
(d+L)







A1

A2

B1

B2


 =




0
0
0
0


 ,
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and straightforward (but tedious) calculations show that the above matrix is singular if ω
is a solution of the following non-linear dispersion relation:

4ω2ZE

[
−ZV cos

(
ω

cE

d

)
cos

(
ω

cV

L

)
+ ZE sin

(
ω

cE

d

)
sin

(
ω

cV

L

)]
= 0

⇔ tan

(
ω

cE

d

)
tan

(
ω

cV

L

)
=
ZV

ZE

. (6.1)

If the set of solutions of the dispersion relation (compressional resonance frequencies) is
denoted by {ωn}n∈N, a multimodal expansion of the compressional solutions of this coupled
problem can be expressed by

UE(z) =
∑

n∈N

(An1e
iknEz + An2e

−iknEz)e3,

UV(z) =
∑

n∈N

(Bn
1 e

iknVz +Bn
2 e
−iknVz)e3,

where knE = ωn
cE

, knV = ωn
cV

. Consequently, under this framework, the time-dependent com-
pressional solutions can be written as

uE(z, t) =
∑

n∈N

(An1e
iknEz + An2e

−iknEz)e−iωnte3,

uV(z, t) =
∑

n∈N

(Bn
1 e

iknVz +Bn
2 e
−iknVz)e−iωnte3.

In the case of Model1, only the first term of the series is taking into account, which
corresponds to the lowest resonance frequency ω0 (with the smallest magnitude). If Model2
is used, the series is truncated to considering only a finite number N of terms (being N
typically a low integer value).

6.5 Full time-dependent one- and three-dimensional

viscoelastic model

In this section, a viscoelastic material is considered. To find an approximated solution of
this coupled problem, a discretization based on a finite element method has been utilized.
In order to write the strong differential form, both models, the steel plate one and the
viscoelastic solid layer, have been written in terms of the displacement field. Both one- and
three-dimensional problems admit the same finite element procedure. The only difference
consists in the differential operators (being only simple ordinary differential operators in the
first Cartesian coordinate in the one-dimensional problem), and the computational domains
(which will be intervals with lengths determined by the thickness of the steel plate and the
damping sample). Having these differences in mind, and for the sake of the simplicity



264 Viscoelastic materials under impact excitations

ΓFE

ΓN

ΓLΓL ν

ΓC n

ΩE

ΩV
ΓFV

Figure 6.2: Geometric scheme of the coupled problem with all the domains and boundaries
involved. The viscoelastic solid is highlighted in gray.

in the exposition, the detailed description of the method will be introduced in the three-
dimensional case. Let ΩE and ΩV be the domains occupied by the elastic plate and the
viscoelastic solid, respectively (see Figure 6.2). The domain ΩV has 3 disjoint boundaries,
∂ΩV = ΓN ∪ΓFV

∪ΓC, being ΓN the boundary where a rigid wall condition is imposed, ΓFV

the free boundary, and ΓC the contact between the viscoelastic solid and the elastic plate.
The domain ΩE has 3 disjoint boundaries, ∂ΩE = ΓL ∪ ΓFE

∪ ΓC, being ΓL the boundary
where the load is imposed, and ΓFE

the free boundary. In this section, n is the unit normal
vector to ΓC ∪ ΓN ∪ ΓFV

outwards the viscoelastic solid, and ν is the unit normal vector to
ΓFE
∪ ΓL outwards the elastic plate.

6.5.1 Strong formulation

The time-dependent problem can be described by the following coupled system of partial
differential equations:

ρVü
V − div(σ′V(uV))− div(σ′′V(u̇V)) = 0 in ΩV × [0, T ], (6.2)

ρEü
E − div(σE(uE)) = 0 in ΩE × [0, T ], (6.3)

uV = 0 on ΓN × [0, T ], (6.4)

σ′V(uV) · n+ σ′′V(u̇V) · n = 0 on ΓFV
× [0, T ], (6.5)

uV · n = uE · n on ΓC × [0, T ], (6.6)

(σ′V(uV)n+ σ′′V(u̇V)n) · n = σE(uE)n · n on ΓC × [0, T ], (6.7)

σE(uE) · ν = 0 on ΓFE
× [0, T ], (6.8)

σE(uE) · ν = f(t)δx0(x) on ΓL × [0, T ], (6.9)

uV(·, 0) = uV
0 , u̇

V(·, 0) = vV
0 in ΩV, (6.10)

uE(·, 0) = uE
0 , u̇

E(·, 0) = vE
0 in ΩE, (6.11)

where uV, ρV, and σV are the displacement field, the mass density, and the stress tensor of
the viscoelastic solid, and uE, ρE, and σE are the displacement field, the mass density, and
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the stress tensor of the elastic plate, respectively, u̇ = ∂u
∂t

, and ü = ∂2u
∂t2

, and uV
0 and vV

0 are
the initial conditions for the displacement and the velocity in the viscoelastic solid, and uE

0

and vE
0 are the initial conditions for the displacement and the velocity in the elastic plate,

compute from the time-harmonic source problem.

6.5.2 Variational formulation

To write a weak formulation of the coupled problem (6.2)-(6.11), appropriate functional
spaces are introduced. Let H = L2(ΩV) × L2(ΩE) and V = {(wV,wE) ∈ H1

ΓN
(ΩV) ×

H1(ΩE) : wV · n|ΓC
= wE · n|ΓC

}, being

H1
ΓN

(ΩV) = {wV ∈ (H1(ΩV))2 : wV · n|ΓN
= 0}.

If the equation (6.2) is multiplied by a test function wV, which vanishes on ΓN, and this
result is integrated in ΩV,

∫

ΩV

ρVü
V ·wVdV −

∫

ΩV

div(σ′V(uV))wVdV −
∫

ΩV

div(σ′′V(u̇V))wVdV = 0.

Using a Green’s formula (see [24]), it holds
∫

ΩV

ρVü
V ·wVdV +

∫

ΩV

σ′V(uV) · ∇wVdV +

∫

ΩV

σ′′V(u̇V) · ∇wVdV

=

∫

∂ΩV

[
σ′V(uV) · nwV + σ′′V(u̇V) · nwV

]
dS.

Taking into account (6.5),
∫

ΩV

ρVü
V ·wVdV +

∫

ΩV

σ′V(uV) · ∇wVdV +

∫

ΩV

σ′′V(u̇V) · ∇wVdV

=

∫

ΓC

[
σ′V(uV) · n ·wV + σ′′V(u̇V) · n ·wV

]
dS.

(6.12)

If the equation (6.3) is multiplied by a test function wE, and this result is integrated in ΩE,
∫

ΩE

ρEü
E ·wEdV −

∫

ΩE

div(σE(uE))wEdV = 0.

Using a Green’s formula (see [24]), it holds
∫

ΩE

ρEü
E ·wEdV +

∫

ΩE

σE(uE) · ∇wEdV =

∫

∂ΩE

σE(uE) · νwEdS.
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Taking into account (6.8) and (6.9),

∫

ΩE

ρEü
E ·wEdV +

∫

ΩE

σE(uE) · ∇wEdV =

∫

ΓC

σE(uE) · νwEdS +

∫

ΓL

f(t)δx0(x)wEdS.

(6.13)
Adding (6.12) and (6.13),

∫

ΩV

ρVü
V ·wVdV +

∫

ΩV

σ′V(uV) · ∇wVdV +

∫

ΩV

σ′′V(u̇V) · ∇wVdV +

∫

ΩE

ρEü
E ·wEdV

+

∫

ΩE

σE(uE) · ∇wEdV =

∫

ΓC

[
σ′V(uV) · n ·wV + σ′′V(u̇V) · n ·wV

]
dS

+

∫

ΓC

σE(uE) · νwEdS +

∫

ΓL

f(t)δx0(x)wEdS,

and considering (6.7),

∫

ΩV

ρVü
V ·wVdV +

∫

ΩV

σ′V(uV) · ∇wVdV +

∫

ΩV

σ′′V(u̇V) · ∇wVdV

+

∫

ΩE

ρEü
E ·wEdV +

∫

ΩE

σE(uE) · ∇wEdV =

∫

ΓL

f(t)δx0(x)wEdS.

Then, the variational formulation of the problem obtained taking into account the func-
tional spaces described above is:
Given an imposed load f(t) ∈ C0(0, T ), and fixed initial conditions, find (uV,uE) ∈
C1([0, T ]; V) ∩ C2([0, T ]; H) satisfying

∫

ΩV

ρVü
V ·wVdV +

∫

ΩE

ρEü
E ·wEdV +

∫

ΩV

σ′′V(u̇V) · ∇wVdV +

∫

ΩV

σ′V(uV) · ∇wVdV

+

∫

ΩE

σE(uE) · ∇wEdV =

∫

ΓL

f(t)δx0(x)wEdS, ∀(wV,wE) ∈ V.

(6.14)

6.5.3 Finite element discretization

Since the displacement field in the plate, and in the viscoelastic solid belong to the
same kind of functional space, H1

ΓN
(ΩV) and H1(ΩE), respectively, the same type of finite

elements should be used for each of them to discretize the variational problem (6.14). Let
Th be a regular tetrahedral partition of ΩV ∪ ΩE, such that ΩV or ΩE contain completely
every tetrahedron. P1(T ) denotes the space of polynomials of degree 1 on T ∈ Th. On each
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tetrahedron T ∈ Th, the discretization nodes are the vertices of the tetrahedron. Then,
the displacement field in the plate and the viscoelastic solid are approximated by means of
Lagrangian P1 elements and hence belonging respectively to the discrete spaces

Lh,ΓN
(ΩV) = {wV

h ∈ H1
ΓN

(ΩV) : wV
h |T ∈ P1(T )2 ∀T ∈ Th, T ⊂ ΩV},

Lh(ΩE) = {wE
h ∈ H1(ΩE) : wE

h |T ∈ P1(T )2 ∀T ∈ Th, T ⊂ ΩE}.

Since both discrete spaces, Lh,ΓN
(ΩV) and Lh(ΩE), are finite-dimensional (with dimensions

NV and NE, respectively), a functional basis for each space can be introduced, this is,
Lh,ΓN

(ΩV) = 〈wV
1 ,w

V
2 , . . . ,w

V
NV
〉 and Lh(ΩE) = 〈wE

1 ,w
E
2 , . . . ,w

E
NE
〉. Thus, the functional

space V can be replaced in the discrete problem by

Vh = {(wV
h ,w

E
h ) ∈ V : (wV

h ,w
E
h ) ∈ Lh,ΓN

(ΩV)× Lh(ΩE)}.

Now, it is possible to write the discrete approximation of the variational problem:
Given an imposed load f(t) ∈ C0(0, T ), and fixed initial conditions, find (uV

h ,u
E
h ) ∈

C1([0, T ]; Vh) ∩ C2([0, T ]; Vh) satisfying

∫

ΩV

ρVü
V
h ·wV

h dV +

∫

ΩV

σ′V(uV
h ) · ∇wV

h dV +

∫

ΩV

σ′′V(u̇V
h )) · ∇wV

h dV +

∫

ΩE

ρEü
E
h ·wE

hdV

+

∫

ΩE

σE(uE
h ) · ∇wE

hdV =

∫

ΓL

f(t)δx0(x)wE
hdS, ∀(wV

h ,w
E
h ) ∈ Vh. (6.15)

Matrix formulation

Let ~UV
h the column vector of components of uV

h in the finite element basis associated
with Lh,ΓN

(ΩV), this is,

uV
h (p, t) =

NV∑

j=1

[ ~UV
h (t)]jw

V
j (p),

and ~UE
h the column vector of components of uE

h in the finite element basis associated with
Lh(ΩE) and so,

uE
h (p, t) =

NE∑

j=1

[ ~UE
h (t)]jw

E
j (p).

The matrix formulation of the problem (6.15) is

(
MV 0

0 ME

)(
~̈UV
h

~̈UE
h

)
+

(
CV 0
0 0

)(
~̇UV
h

~̇UE
h

)
+

(
KV 0
0 KE

)(
~UV
h
~UE
h

)
=

(
0

GE

)
,
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where the coefficients of the mass, damping and stiffness matrices are, respectively

[MV]ij =

∫

ΩV

ρVẅ
V
j ·wV

j dV, [ME]ij =

∫

ΩE

ρEẅ
E
j ·wE

j dV,

[CV]ij =

∫

ΩV

σ′′V(ẇV
j ) · ∇wV

j dV, [KV]ij =

∫

ΩV

σ′V(wV
j ) · ∇wV

j dV,

[KE]ij =

∫

ΩE

σE(wE
j ) · ∇wE

j dV, [GE]ij =

∫

ΓL

f(t)δx0(x)wE
j dS.

The time-dependent system of differential equations has been solved using a second-order
unconditional Newmark method (see [16] for further details).

6.6 Full time-dependent three-dimensional poroelas-

tic model

In this section, the sample under consideration is a poroelastic material which is modeled
by using the Biot model [29, 30]. In order to find an approximated solution of this coupled
problem, a discretization based on a finite element method has been considered. To write the
strong differential form, the steel plate model has been written in terms of the displacement
field. The poroelastic solid model has been written in terms of the displacement field in
the porous frame, and in terms of the pressure field in the fluid. Let ΩE and ΩP be the
domains occupied by the elastic plate and the poroelastic solid, respectively (see Figure 6.3).
The domain ΩP has 3 disjoint boundaries, ∂ΩP = ΓN ∪ ΓFP

∪ ΓC, being ΓN the boundary

ΓFE

ΓFP

ΓN

ΓLΓL ν

ΓC n

ΩE

ΩP

Figure 6.3: Geometric scheme of the coupled problem with all the domains and boundaries
involved. The poroelastic solid is highlighted in gray.

where a rigid wall condition is imposed, ΓFP
the free boundary, and ΓC the contact between

the poroelastic solid and the elastic plate. The domain ΩE has 3 disjoint boundaries,
∂ΩE = ΓL ∪ ΓFE

∪ ΓC, being ΓL the boundary where the load is imposed, and ΓFE
the free

boundary. In this section, n is the unit normal vector to ΓC ∪ ΓN ∪ ΓFP
pointing outwards

the poroelastic solid, and ν is the unit normal vector to ΓFE
∪ΓL outwards the elastic plate.
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6.6.1 Strong formulation

The time-dependent poroelastic problem [7] to solve is described by the following set of
coupled governing equations:

ρPü
S − div(σ̃′P(uS))− div(σ̃′′P(u̇S)) = γ̃ grad(πP) in ΩP × [0, T ], (6.16)

−∆πP +
ρ̃22

R̃
π̈p −

ρ̃22

φ2
γ̃ div(üS) = 0 in ΩP × [0, T ], (6.17)

ρEü
E − div(σE(uE)) = 0 in ΩE × [0, T ], (6.18)

uS = 0, uF · n− uS · n = 0 on ΓN × [0, T ], (6.19)

σ′t(u
S) · n+ σ′′t (u̇S) · n = 0 on ΓFP

× [0, T ], (6.20)

πP = 0 on ΓFP
× [0, T ], (6.21)

σ′t(u
S) · n+ σ′′t (u̇S) · n = σE(uE) · n on ΓC × [0, T ], (6.22)

uF · n− uS · n = 0, uS = uE on ΓC × [0, T ], (6.23)

σE(uE) · ν = 0 on ΓFE
× [0, T ], (6.24)

σE(uE) · ν = f(t)δx0(x) on ΓL × [0, T ], (6.25)

uS(·, 0) = uS
0, u̇

S(·, 0) = vS
0 in ΩP, (6.26)

uF(·, 0) = uF
0 , u̇

F(·, 0) = vF
0 in ΩP, (6.27)

πP(·, 0) = πP
0 in ΩP, (6.28)

uE(·, 0) = uE
0 u̇

E(·, 0) = vE
0 in ΩE, (6.29)

where ρ̃11, ρ̃12 and ρ̃22 are coefficients related to the geometry of the frame that can be
written as

ρ̃11 = ρ1 + ρa − iσφ2G(ω)

ω
,

ρ̃12 = −ρa + iσφ2G(ω)

ω
,

ρ̃22 = φρ1 + ρa − iσφ2G(ω)

ω
,

being φ the porosity, σ the airflow resistivity, G(ω) the frequency-dependent function related
to the chosen porous model, ρa the inertial coupling term related to the tortuosity α∞
following the expression ρa = φρ0(α∞ − 1),

γ̃ = φ

(
ρ̃12

ρ̃22

− Q̃

R̃

)
, (6.30)
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with R̃, P̃ and Q̃ are the elastic coefficients, given by

P̃ =
(1− π)(1− φ− Kb

Ks
)Ks + Ks

Kf
Kb

1− φ− Kb

Ks
+ φKs

Kf

+
4

3
N,

Q̃ =
(1− φ− Kb

Ks
)φKs

1− φ− Kb

Ks
+ φKs

Kf

, (6.31)

R̃ =
φ2Ks

1− φ− Kb

Ks
+ φKs

Kf

,

where Kb, Kf and Ks are the bulk modulus of the frame at constant pressure in air, the
bulk modulus of the air, and of the elastic solid from which the frame is made, respectively,
and N is the shear modulus of the material. Since the air does not contribute to the shear
restoring force, N is also the shear modulus of the frame. When Ks is infinite (if the frame
is made of a not compressible material) (6.31) can be simplified and results

P̃ = Kb +
(1− φ)2

φ
Kf +

4

3
N,

Q̃ = (1− φ)Kf ,

R̃ = φKf .

This supposition can be used for most of the sound-absorbing porous materials. The bulk
modulus Kb is given by

Kb =
2N(ν + 1)

3(1− 2ν)
,

where ν is the Poisson coefficient of the frame.

6.6.2 Variational formulation

To write a weak formulation of the coupled problem, appropriate functional spaces are
introduced. Let H = L2(ΩP) × L2(ΩP) × L2(ΩE), and V = {(wS, q,wE) ∈ H1

ΓN
(ΩP) ×

H1
ΓFP

(ΩP)×H1(ΩE) : wS|ΓC
= wE|ΓC

}, where

H1
ΓN

(ΩP) = {w ∈ (H1(ΩP))2 : w · n|ΓN
= 0},

H1
ΓFP

(ΩF) = {q ∈ H1(ΩF) : q|ΓFP
= 0}.

To obtain the variational formulation of the solid part, if the equation (6.16) is multiplied
by a test function wS, which vanishes on ΓN, and this result is integrated in ΩP, it results

∫

ΩP

ρPü
S ·wSdV −

∫

ΩP

div(σ̃′P(uS))wSdV −
∫

ΩP

div(σ̃′′P(u̇S))wSdV −
∫

ΩP

γ̃∇πPw
SdV = 0.
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Using a Green’s formula (see [24]), it holds
∫

ΩP

ρPü
S ·wSdV +

∫

ΩP

σ̃′P(uS) · ∇wSdV +

∫

ΩP

σ̃′′P(u̇S)) · ∇wSdV −
∫

ΩP

γ̃∇πPw
SdV

=

∫

∂ΩP

σ̃′P(uS) · nwSdS +

∫

∂ΩP

σ̃′′P(u̇S) · nwSdS.

Considering σt(u
S, πP) = σ̃P(uS)− φ

(
1 + Q̃

R̃

)
πPI

∫

ΩP

ρPü
S ·wSdV +

∫

ΩP

σ̃′P(uS) · ∇wSdV +

∫

ΩP

σ̃′′P(u̇S)) · ∇wSdV −
∫

ΩP

γ̃∇πPw
SdV

=

∫

∂ΩP

σ′t(u
S) · nwSdS +

∫

∂ΩP

σ′′t (u̇S) · nwSdS +

∫

∂ΩP

φ

(
1 +

Q̃

R̃

)
πPw

S · ndS,

and taking into account (6.20) and (6.21),

∫

ΩP

ρPü
S ·wSdV +

∫

ΩP

σ̃′P(uS) · ∇wSdV +

∫

ΩP

σ̃′′P(u̇S)) · ∇wSdV −
∫

ΩP

γ̃∇πPw
SdV

=

∫

ΓC

[
σ′t(u

S) · n ·wS + σ′′t (u̇S) · n ·wS
]

dS +

∫

ΓC

φ

(
1 +

Q̃

R̃

)
πPw

S · ndS. (6.32)

To obtain the variational formulation of the fluid part, multiplying the equation (6.17) by
φ2

ρ̃22
results

− φ2

ρ̃22

∆πP +
φ2

R̃
π̈p − γ̃ div(üS) = 0. (6.33)

Multiplying the equation (6.33) by a test function q, which vanishes on ΓFP
, and this result

is integrated in ΩP,

−
∫

ΩP

φ2

ρ̃22

∆πPqdV +

∫

ΩP

φ2

R̃
π̈pqdV −

∫

ΩP

γ̃∇ · üSqdV = 0.

Using a Green’s formula (see [24]), it holds
∫

ΩP

φ2

ρ̃22

∇πP · ∇qdV +

∫

ΩP

φ2

R̃
π̈pqdV +

∫

ΩP

γ̃üS · ∇qdV =

∫

∂ΩP

φ2

ρ̃22

∂πP

∂n
qdS

+

∫

∂ΩP

γ̃üS · nqdS.

It is possible to write the time-harmonic displacement field of the fluid phase in terms of
the pressure in the pores, and in the terms of the displacement vector of the solid phase,
that is,

UF =
φ

ω2ρ̃22

grad πP +
ρ̃12

ρ̃22

US,
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and in the time domain

− üF =
φ

ρ̃22

gradπP −
ρ̃12

ρ̃22

üS. (6.34)

Considering (6.30) and (6.34), it is possible to rewrite the boundary integral as

φ2

ρ̃22

∂πP

∂n
+ γ̃üS ·n = −φ

(
üF · n+

Q̃

R̃
üS · n

)
= −φ

(
üF · n− üS · n

)
− φ

(
1 +

Q̃

R̃

)
üS ·n,

(6.35)
and then
∫

ΩP

φ2

ρ̃22

∇πP · ∇qdV +

∫

ΩP

φ2

R̃
π̈pqdV +

∫

ΩP

γ̃üS · ∇qdV = −
∫

∂ΩP

φ(üF · n− üS · n)qdS

−
∫

∂ΩP

φ

(
1 +

Q̃

R̃

)
üS · nqdS.

Taking into account the first coupling condition in (6.19),
∫

ΩP

φ2

ρ̃22

∇πP · ∇qdV +

∫

ΩP

φ2

R̃
π̈pqdV +

∫

ΩP

γ̃üS · ∇qdV = −
∫

ΓC

φ(üF · n− üS · n)qdS

−
∫

ΓC

φ

(
1 +

Q̃

R̃

)
üS · nqdS,

and considering the coupling conditions,
∫

ΩP

φ2

ρ̃22

∇πP · ∇qdV +

∫

ΩP

φ2

R̃
π̈pqdV +

∫

ΩP

γ̃üS · ∇qdV

= −
∫

ΓC

φ

(
1 +

Q̃

R̃

)
üS · nqdS. (6.36)

If the equation (6.18) is multiplied by a test function wE, and this result is integrated in
ΩE, ∫

ΩE

ρEü
E ·wEdV −

∫

ΩE

div(σE(uE))wEdV = 0.

Using a Green’s formula (see [24]), it holds
∫

ΩE

ρEü
E ·wEdV +

∫

ΩE

σE(uE) · ∇wEdV =

∫

∂ΩE

σE(uE) · νwEdS.

Taking into account (6.24) and (6.25),
∫

ΩE

ρEü
E ·wEdV +

∫

ΩE

σE(uE) · ∇wEdV =

∫

ΓC

σE(uE) · νwEdS

+

∫

ΓL

f(t)δx0(x)wEdS, (6.37)
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and adding (6.32), (6.36) and (6.37),
∫

ΩP

ρPü
S ·wSdV +

∫

ΩP

σ̃′P(uS) · ∇wSdV +

∫

ΩP

σ̃′′P(u̇S)) · ∇wSdV −
∫

ΩP

γ̃∇πPw
SdV

+

∫

ΩP

φ2

ρ̃22

∇πP · ∇qdV +

∫

ΩP

φ2

R̃
π̈pqdV +

∫

ΩP

γ̃üS · ∇qdV +

∫

ΩE

ρEü
E ·wEdV

+

∫

ΩE

σE(uE) · ∇wEdV =

∫

ΓC

[
σ′t(u

S) · n ·wS + σ′′t (u̇S) · n ·wS
]

dS

+

∫

ΓC

φ

(
1 +

Q̃

R̃

)
πPw

S · ndS −
∫

ΓC

φ

(
1 +

Q̃

R̃

)
üS · nqdS −

∫

ΓC

σE(uE) · nwEdS

+

∫

ΓL

f(t)δx0(x)wEdS. (6.38)

Since the most part of porous materials used in acoustics verify that the bulk modulus
of the porous material is negligible compared to the bulk modulus of the material from
which the skeleton is made (see [10] for more details), Kb/Ks � 1. Then by using the
definitions of the elastic coefficients (6.31),

φ

(
1 +

Q̃

R̃

)
= 1− Kb

Ks
∼= 1. (6.39)

Taking into account (6.22) and (6.39), (6.38) results

∫

ΩP

ρPü
S ·wSdV +

∫

ΩP

σ̃′P(uS) · ∇wSdV +

∫

ΩP

σ̃′′P(u̇S)) · ∇wSdV −
∫

ΩP

γ̃∇πPw
SdV

+

∫

ΩP

φ2

ρ̃22

∇πP · ∇qdV +

∫

ΩP

φ2

R̃
π̈pqdV +

∫

ΩP

γ̃üS · ∇qdV +

∫

ΩE

ρEü
E ·wEdV

+

∫

ΩE

σE(uE) · ∇wEdV =

∫

ΓC

πPw
S · ndS −

∫

ΓC

üS · nqdS +

∫

ΓL

f(t)δx0(x)wEdS.

Then, the variational formulation of the problem obtained taking into account the func-
tional spaces described above is:
Given an imposed load f(t) ∈ C0(0, T ), and fixed initial conditions, find (uS, πP,u

E) ∈
C1([0, T ]; V) ∩ C2([0, T ]; H) satisfying

∫

ΩP

ρPü
S ·wSdV +

∫

ΩP

γ̃üS · ∇qdV +

∫

ΩP

φ2

R̃
π̈pqdV +

∫

ΩE

ρEü
E ·wEdV

+

∫

ΩP

σ̃′′P(u̇S)) · ∇wSdV +

∫

ΩP

σ̃′P(uS) · ∇wSdV −
∫

ΩP

γ̃∇πPw
SdV

+

∫

ΩP

φ2

ρ̃22

∇πP · ∇qdV +

∫

ΩE

σE(uE) · ∇wEdV = −
∫

ΓC

üS · nqdS

+

∫

ΓC

πPw
S · ndS +

∫

ΓL

f(t)δx0(x)wEdS, ∀(wS, q,wE) ∈ V.



274 Viscoelastic materials under impact excitations

6.7 Inverse problem to determine the elastic coeffi-

cients

From an experimental point of view, both the force imposed by the hammer at the
impact point, and the acceleration at one point on the top surface of the steel plate are
the only available information. With this kind of databases in mind, it is straightforward
to design a least-square problem where the mechanical properties of the elastic part of
the solid material, this is, the Young modulus E and the loss factor η, can be computed
as the solution of the following inverse problem: given the force f exp(t), and the normal
acceleration aexp(t) measured at point p on the top steel surface ΓL, both in the time
interval [0, T ], find the values E∗ and η∗ such that

(E∗, η∗) = arg min
E>0, η>0

∥∥aexp(t)− üE(p, t) · n
∥∥2

L2(0,T )

||aexp(t)||2L2(0,T )

, (6.40)

where uE is the displacement field of the steel plate computed for a given pair of values
(E, η) with any of the models of the hierarchy, Modeln with n = 0, . . . , 5. Typically, the
numerical solution of this optimization problem involves a high computational cost using a
full three-dimensional model, since it is required to solve the direct problem a large number
of times. However, taking into account the hierarchy of models, it is possible to reduce this
computational cost, using in an ordered manner the simplest models to estimate roughly
the optimal values (E∗, η∗), and then in a subsequent step, refine such computation using
a reduced number of solutions of any of the full models.

However, to mimic the experimental procedure described by the standard ISO 9052-1
(see more details in Section 6.2), instead of comparing directly the time series measured
by the accelerometer, a fitting procedure is used to compute the main resonance frequency,
and the damping decay of the measured signal. With this purpose, let consider an arbitrary
time-dependent signal a(t) defined in the time interval [0, T ], the main frequency ωa, and
a damping decay αa associated with the signal a(t), given by (ωa, αa) = Π(a(t)), where ωa
and αa are part of the parametric solution of the following least-square problem:

(ωa, αa, Aa, φa) = arg min
A>0, ω>0

α>0, 0≤φ<2π

||a(t)− Ae−αt cos(ωt+ φ)||L2(0,T )

||a(t)||L2(0,T )

.

Consequently, using the fitting operator Π, the inverse problem (6.40) is replaced by an
analogous one where operator Π is involved, this is,

(E∗, η∗) = arg min
E>0, η>0

∥∥Π(aexp(t))− Π
(
üE(p, t) · n

)∥∥2

L2(0,T )

||Π(aexp(t))||2L2(0,T )

.

The above optimization problem is used in all the numerical results presented in the section
below.
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6.8 Numerical results

In this section, numerical simulations are performed to illustrate the proposed method-
ology. First of all, some numerical results with manufactured data are shown to validate
the code. Then, numerical simulations considering a viscoelastic sample are performed.

6.8.1 Code validation

Firstly, to validate the hierarchy of models, some manufactured data have been con-
sidered, not only for cross-testing the coherent behavior of every model in the hierarchy,
but also to illustrate numerically the uniqueness of the solution of the inverse problem
stated in the section above. In what follows, the manufactured data have been obtained
by running the time-dependent one-dimensional viscoelastic element (Model3), and they
have been compared with Model1 and Model4. In both cases, the output results are pretty
similar and, for the sake of simplicity in the exposition, only the numerical results related
to Model4 are shown.

Figure 6.4: Left- and right-hand side of the dispersion equation (6.1) used to identify their
zeros using a convenient initial guess, which is plotted with respect to the frequency values.

Notice that, in the case of using Model1, the nonlinear dispersion relation (6.1) must be
solved numerically to obtain the first zero (with the smallest magnitude). If the damping
is not considered, i.e. η = 0 and E ∈ R, Figure 6.4 shows the location of the zeros of
this dispersion relation as the cutoff points of left- and right-hand side of the dispersion
equation.

Two different materials have been considered to build the manufactured database. For
the viscoelastic material A, the sample thickness is 3 mm, E = 105 Pa, η = 1.6 × 10−2,
ν = 0.47, and ρ = 1.1 × 103 kg/m3. In the case of the second material, the viscoelastic
material B has the same thickness, and the elastic properties E = 105 Pa, η = 1.6 × 10−5,
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ν = 0.47, and ρ = 1.1 × 103 kg/m3. So, the only difference relies on the value of the loss
factor η. To generate the manufactured data, the time series which governs the force of
the hammer acting on the center of the top surface of the steel plate is given by a smooth
function (shown in Figure 6.5).

Figure 6.6 shows the values of acceleration for the two sets of manufactured data (vis-
coelastic material A in left plot, and viscoelastic material B in right one), created with
Model3.

Figure 6.5: Time-dependent force response, which is exerted by the hammer on the center
of the top surface of the steel plate.

Figure 6.6: Acceleration values for the referenced manufactured data created with Model3.
Left: viscoelastic material A. Right: viscoelastic material B.

To illustrate numerically that the optimization problem has an unique local minimum
(and hence global minimum), the cost function has been evaluated in a grid of values sweep-
ing a large variety of pairs (E, η). Figure 6.7 shows the cost function of the minimization
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problem, this is, the relative errors between the manufactured data, and the computed ones
with Model3, in the left plot for the viscoelastic material A, and in the right plot for the
viscoelastic material B.

Figure 6.7: Relative errors in terms of the Young modulus, and the loss factor for the
manufactured data created with Model3. Left: viscoelastic material A. Right: viscoelastic
material B.

Figure 6.8 shows the comparison between the acceleration values for the manufactured
data, created with Model3 and the numerical results computed by using the full one-
dimensional model. Left plot shows the results for the viscoelastic material A, and right
plot for the material B. If the fitting is performed by using the Model3, and a standard
least-square procedure, the elastic coefficients recovered by the numerical solution of the
inverse problem for the material A are E = 1.199× 105, and η = 1.463× 10−2, whereas in
the case of the material B, it has been obtained E = 1.0× 105, and η = 1.602× 10−5. From
this comparison, it is clear the weak dependence of the least-square fitting with respect to
the Young modulus values and the accurate prediction of the loss factor in both materials.

Figures 6.9 and 6.10 show the comparison between the acceleration values for the man-
ufactured data, created with Model3, and the numerical results computed by using the full
three-dimensional model for the materials A and B, respectively. In left plots, the com-
puted results are not post-processed, and in right ones, the computed results are smoothed.
The results computed with the three-dimensional model have been smoothed to compare
the data avoiding the oscillations due to the time step discretization. If the fitting is
performed by using the Model4, and a standard least-square procedure, the elastic coeffi-
cients recovered by the numerical solution of the inverse problem for the material A are
E = 1.083× 105, and η = 1.538× 10−2, whereas in the case of the material B, it has been
obtained E = 1×105, and η = 3.210×10−5. As it can be observed in Figure 6.10, when the
material has a small loss factor, the three-dimensional model underestimates the computed
values.
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Figure 6.8: Referenced manufactured data created with Model3 (solid blue lines), and those
values computed by using the one-dimensional model (dashed red lines). Left: viscoelastic
material A. Right: viscoelastic material B.

Figure 6.9: Referenced manufactured data created with Model3 (solid blue lines), and
those values computed by using the full three-dimensional model (dashed red lines) for the
viscoelastic material A. Left: results without post-processing. Right: smoothed results.

Now, the same two viscoelastic materials, A and B, have been considered, but in this
case, the manufactured data have been created with Model4. Figure 6.11 shows the accel-
eration values for these two sets of manufactured data.

Following the same procedure as with Model3, to illustrate numerically that the opti-
mization problem has an unique local minimum, the cost function has been evaluated in a
grid of values sweeping a large variety of pairs (E, η). Figure 6.12 shows the relative errors
between the manufactured data, and the computed ones with Model4, in the left plot for
the viscoelastic material A, and in the right plot for the viscoelastic material B.

Figures 6.13 and 6.14 show the comparison between the acceleration values for the
manufactured data created with Model4, and the numerical results computed by using the
one-dimensional model for the viscoelastic materials A and B, respectively. Left plots show
the computed results without post-processing, and right plots show the smoothed results.
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Figure 6.10: Referenced manufactured data created with Model3 (solid blue lines), and
those values computed by using the full three-dimensional model (dashed red lines) for the
viscoelastic material B. Left: results without post-processing. Right: smoothed results.

Figure 6.11: Acceleration values for the referenced manufactured data created with Model4.
Left: viscoelastic material A. Right: viscoelastic material B.

As it can be observed, in this case, since the spurious oscillations in the computed data do
not appear, the smoothed data do not show better results than the original ones. If the
fitting is performed by using the Model4, and a standard least-square procedure, the elastic
coefficients recovered by the numerical solution of the inverse problem for the material A
are E = 1.359 × 105, and η = 1.375 × 10−2, whereas in the case of the material B, it has
been obtained E = 1.023× 105, and η = 1.509× 10−5.

Figures 6.15 and 6.16 show the comparison between the acceleration values for the
manufactured data created with Model4, and the numerical results computed by using
the full three-dimensional model for the materials A and B, respectively. In left plots,
the computed results are not post-processed, and in right ones, the computed results are
smoothed. As before, the computed results have been smoothed to avoid the spurious
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Figure 6.12: Relative errors in terms of the Young modulus, and the loss factor for the
manufactured data created with Model4. Left: viscoelastic material A. Right: viscoelastic
material B.

Figure 6.13: Referenced manufactured data created with Model4 (solid blue lines), and those
values computed by using the one-dimensional model (dashed red lines) for the viscoelastic
material A. Left: results without post-processing, right: smoothed results.

oscillations due to the time step discretization. If the fitting is performed by using the
Model4, and a standard least-square procedure, the elastic coefficients recovered by the
numerical solution of the inverse problem for the material A are E = 1.15 × 105, and
η = 1.497× 10−2, whereas in the case of the material B, it has been obtained E = 105, and
η = 1.6× 10−5.
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Figure 6.14: Referenced manufactured data created with Model4 (solid blue lines), and those
values computed by using the one-dimensional model (dashed red lines) for the viscoelastic
material B. Left: results without post-processing, right: smoothed results.

Figure 6.15: Referenced manufactured data created with Model4 (solid blue lines), and
those values computed by using the full three-dimensional model (dashed red lines) for the
viscoelastic material A. Left: results without post-processing, right: smoothed results.

6.8.2 Viscoelastic sample

Now, a viscoelastic material of thickness 3 mm has been considered. Figure 6.17 shows
the sample of viscoelastic material used in the experimental measurements in left plot, and
in right plot, the time-dependent force exerted by the hammer on the center of the top
surface of the steel plate. Figure 6.18 shows, in the left plot, the values of acceleration for
the viscoelastic material under consideration. To illustrate the difficulties appearing in the
optimization problem, the cost function has been evaluated in a grid of values sweeping a
large amount of pairs (E, ν). In the right plot of Figure 6.18, the relative errors between
the available experimental data, and the computed ones are shown. Figure 6.19 shows the
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Figure 6.16: Referenced manufactured data created with Model4 (solid blue lines), and
those values computed by using the full three-dimensional model (dashed red lines) for the
viscoelastic material B. Left: results without post-processing, right: smoothed results.

Figure 6.17: Left: Viscoelastic material (Sample 4) whose results are shown in this work.
Right: Time-dependent force response exerted by the hammer on the center of the top
surface of the steel plate.

comparison between the values of acceleration for the Sample 4, and the numerical results
computed by using the one-dimensional model, in left plot, and the full three-dimensional
model, in right plot. As it can be observed in Figure 6.19, it does not appear major
differences between both simulations.

The results obtained with the manufactured data and with the viscoelastic sample allow
us to conclude that the use of a more complex model, such as the three-dimensional one,
does not provide better results. It could be considered that the force applied by the hammer
acts only perpendicularly to the sample and that other modes of excitation do not appear.
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Figure 6.18: Left: Acceleration values for the viscoelastic material considered. Right:
Relative errors in terms of the Young modulus and the loss factor for the Sample 4.

Figure 6.19: Available experimental data for the Sample 4 (solid blue lines), and the com-
puted ones by using the Finite Element method (dashed red lines). Left: values com-
puted by using the one-dimensional model. Right: values computed by using the three-
dimensional model.

6.9 Conclusions

The standard ISO 9052-1 provides a framework to determine the dynamic stiffness of a
given solid material experimentally under a pointwise excitation. However, that setting does
not provide any direct estimation to compute its elastic coefficients at linear regime, such
as the elastic modulus and the loss factor. The present work presents a novel hierarchical
modeling procedure to compute these elastic coefficients numerically using only a reduced
experimental database under the standard ISO 9052-1. In this novel approach, to define
the hierarchy of models, analytical models, compressional modal decomposition techniques,
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one-dimensional models, and full three-dimensional models are involved. These models
have been considered for viscoelastic and poroelastic materials. Numerical simulations with
manufactured data have been performed to validate the proposed methodology, showing a
good agreement even with the simplest models. Moreover, some preliminary results with a
real viscoelastic sample are shown. In both cases, the results show that it is not necessary
to use a three-dimensional model to get more accurate results. Some numerical results with
different damping materials used for sound insulation in industrial applications are being
performed to improve the existing results.



Further research

To conclude this work, a brief resume of the research lines that can be followed in
the future is given. First of all, open problems derived from the work made in the thesis
are explained. These problems are being solved, or will be solved in the coming months.
Moreover, some open research lines that are challenging and could be really interesting are
described.

Concerning the problem of acoustic characterization of viscoelastic materials, two dif-
ferent research lines can be followed:

• The first one, related to the resolution of the highly oscillatory integrals appearing in
Chapter 3. A wide range of applications in acoustics and electromagnetism needs of
computing definite integrals involving highly oscillatory kernels. These integrals can
be written as the product of two functions: a smooth and non-oscillatory function,
and an oscillatory kernel which satisfies a p-th order ordinary differential equation
whose coefficients are smooth functions depending on a large parameter. There exists
a variety of numerical methods to deal with this kind of oscillatory kernels, such as
Filon-type methods, Levin-type methods, or steepest descent methods [72]. Among
these methods, the classical Levin method and the moment-free Filon method can
approximate the highly oscillatory integral by solving an associated ordinary differen-
tial equation by a collocation method, involving only a reduced number of collocation
points (mainly the endpoints of the integration interval), and also considering a lim-
ited value for their multiplicities [142]. However, assuming bounded coefficients in
the integration interval is the main drawback of these methods. Consequently, these
methods cannot be applied to the integration of oscillatory kernels, such as the Bessel
and Airy functions within integration intervals, including x = 0. To overcome such
limitation, some authors have designed novel methods that compute this kind of in-
tegrals by using a Filon-type method [180] but restricted to some specific oscillatory
kernels.

The proposed future research line consists of developing an efficient generalized Levin-
type method to deal with any kind of exotic oscillatory kernels, even in the case of
coefficients present asymptotes in the integration interval. This technique should be
mainly based on rewriting the differential equation and an extension of the classical
Levin method. Hence, with an adequate selection of the multiplicity of the collocation
points, the method should achieve the same accuracy as the classical Levin method.
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• In Chapter 4, a fast convergent integral equation method to solve a transmission
problem is introduced. This method achieves a fast convergence far away from Wood
anomaly frequencies. The proposed method is based on the use of quasi-periodic
Green functions in combination with a smooth-windowing technique. The future
research is devoted to solving the same problem at certain “Rayleigh-Wood anomalous
frequencies”, at which the classical Green function ceases to exist [39]. Since in many
cases, the integral operators involved in the integral formulation of the problems are
not invertible at Wood anomalies, a finite number of Rayleigh modes in the spectral
expansion of the shifted quasi-periodic Green function Gq

J presents difficulties because
their denominators tend to zero as a Wood anomaly is approached. If these terms are
excluded from the infinite sum, then the convergence of Gq

J is achieved. Following a
similar argument to [39], a modification of Gq

J is necessary to add these lost Rayleigh
modes.

Once the transmission problem with two media in contact in a periodic setting is
solved, achieving superalgebraically convergence at all frequencies, even at and around
Wood anomalies, several open problems appear, such as to consider the shear effects
on the viscoelastic material, to study a multilayer material, or consider a non-planar
directivity pattern for the acoustic source.

Related to the acoustic characterization of materials by using their dynamic stiffness,
two different lines can be followed. The code has been validated, but the results with the
real data for a viscoelastic material do not show good agreement with the experimental
measurements. It is necessary to make some adjustments, such as filter the signal or reduce
the time interval, to achieve better results. Moreover, some simulations with other kinds
of materials will be performed, such as cork, porous materials with vegetable origin, or
poroelastic materials.

In connection with the use of the data-driven approach described in this dissertation, this
methodology has been used to characterize rigid porous materials and viscoelastic materials.
It is interesting to apply it to other kinds of porous materials, such as double porosity
materials [35, 141], whose parametric models have more intrinsic parameters than those
shown in Chapter 1. Also, to characterize viscoelastic materials because when a parametric
model is used, both the elastic and the porous intrinsic parameters are considered, increasing
the computational cost of the fitting problem.

In this document, different setups have been used to measure the experimental data.
For this reason, the data-driven approach has been adapted to each experimental setup.
A very challenging open problem is to use the proposed methodology to characterize a
viscoelastic material reproducing other experimental setups, such as the used in the Oberst
Beam method [71, 139, 178].



Resumen en castellano

La caracterización acústica de materiales juega un papel muy importante en un gran
número de aplicaciones industriales. La preocupación por el confort acústico en los medios
de transporte ha aumentado en los últimos años: la reducción del ruido emitido por los
motores de los aviones o el control de las vibraciones de un veh́ıculo son problemas muy
estudiados en la actualidad. Utilizar una combinación adecuada de materiales para mejorar
el confort acústico es un gran desaf́ıo en las industrias automoviĺıstica y aeroespacial. Del
mismo modo, el uso de nuevos materiales, como las fibras naturales o recicladas, que tienen
un menor impacto medioambiental, se ha hecho cada vez más popular en la industria.

Conocer las propiedades intŕınsecas de un material puede suponer una gran ventaja,
especialmente en la etapa de diseño de sistemas de control del ruido, porque permite des-
cribir de una forma precisa el comportamiento acústico del material. Esto supone un mejor
aprovechamiento de los materiales existentes, o incluso el uso de otros nuevos, durante
la etapa de diseño, provocando una reducción tanto de los costes como del tiempo de
producción. El conocimiento de las propiedades acústicas de un material es una tarea cada
vez más ardua. Por un lado, el incesante desarrollo de nuevos materiales, algunos de ellos
formados por una mezcla de materiales conocidos pero con propiedades diferentes entre śı,
o incluso de materiales de reciclaje, hace dif́ıcil encontrar las propiedades intŕınsecas del
material resultante. Por otro lado, existen materiales con propiedades desconocidas, que
forman parte de dispositivos de control de ruido y que, debido a sus caracteŕısticas o a su
naturaleza, no pueden ser estudiados cuando el material se considera de forma individual,
y es necesario estudiar sus propiedades cuando dicho material forma parte de un sistema
más complejo.

El objetivo principal de esta tesis es dar algunas herramientas novedosas que nos per-
mitan caracterizar acústicamente tanto materiales de una sola capa como materiales com-
puestos de varias capas. En la literatura existe una gran variedad de modelos paramétricos
para caracterizar, de forma precisa, una capa de gran parte de los materiales existentes.
Para conseguir una caracterización adecuada, es fundamental la elección correcta del mode-
lo paramétrico porque cuanto más apropiado sea el modelo, más precisa será su respuesta
mecánica, en comparación con los datos experimentales. Habitualmente, la metodoloǵıa uti-
lizada con los modelos paramétricos es la siguiente: se fija la ley constitutiva dependiente
de la frecuencia, y después se ajustan las medidas experimentales disponibles con la res-
puesta mecánica del modelo elegido. De ese modo, se pueden estimar aquellos parámetros
del modelo que son desconocidos. Esta metodoloǵıa de modelización sufre de la incer-
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tidumbre epistémica de una selección inadecuada del modelo. En esta tesis se considera
un enfoque basado en datos, evitando la necesidad de elegir una ley constitutiva para la
optimización. El problema de ajuste consiste en minimizar la distancia entre un conjunto
de datos experimentales disponibles y los valores obtenidos de la respuesta mecánica del
modelo. Por lo tanto, la modelización matemática de los materiales y la elección de sus
leyes constitutivas dependientes de la frecuencia se basan únicamente en las mediciones
experimentales disponibles, y no en la imposición de una dependencia funcional de los
parámetros intŕınsecos en términos de la frecuencia. Esta metodoloǵıa basada en datos
requiere la solución numérica de un problema inverso para cada frecuencia de interés.

Este documento se divide en tres partes bien diferenciadas, con un hilo conductor: la
caracterización acústica de materiales monocapa o multicapa utilizados en la industria con-
siderando un novedoso enfoque no paramétrico. Cabe destacar que todas las simulaciones
numéricas mostradas a lo largo de este documento se han realizado utilizando escenarios
reales y con la colaboración de distintos grupos de investigación o empresas. La primera
parte de esta tesis está dedicada a la caracterización de materiales porosos y fibrosos. Los
datos experimentales disponibles son valores de absorción en incidencia normal, medidos
en un tubo de Kundt. En la segunda parte, el material objeto de estudio es un sólido
viscoelástico, y los datos experimentales disponibles son la reducción del eco, la pérdida
por inserción y el coeficiente de disipación de potencia, a frecuencias ultrasónicas. Final-
mente, la última parte de la tesis muestra la caracterización de sistemas complejos, que
involucran materiales porosos y sólidos viscoelásticos, en marcos dependientes del tiempo.
Las medidas disponibles para los materiales porosos son valores del coeficiente de absorción
en campo difuso medidos en una cabina alfa, y las de los sólidos viscoelásticos provienen
de un método de excitación y son valores de rigidez dinámica. A continuación se presenta
un resumen de cada parte y de cada caṕıtulo.
Parte I: Caracterización de materiales porosos en el tubo de Kundt. Esta primera
parte se centra en el estudio del comportamiento acústico de materiales porosos y fibrosos
de una y de varias capas, utilizados en la industria automoviĺıstica, en el dominio de la
frecuencia. La predicción de las propiedades acústicas de estos materiales es de gran interés
para una amplia gama de aplicaciones industriales. Sin embargo, el constante desarrollo de
estos materiales hace necesario el uso de nuevas técnicas para describir su comportamiento
acústico. Desde un punto de vista clásico, los materiales porosos se pueden modelar me-
diante el uso de modelos paramétricos. Sin embargo, el modelo elegido podŕıa no ser
adecuado para un material en particular. Por esta razón, se propone un nuevo enfoque
no paramétrico. El objetivo principal de esta parte es comparar el enfoque paramétrico y
la metodoloǵıa no paramétrica, señalando las diferencias entre ambos. Esta primera parte
está organizada de la siguiente manera:

• Caṕıtulo 1: Caracterización paramétrica de materiales porosos multicapa.
Desde un punto de vista macroscópico, los materiales porosos pueden ser modela-
dos utilizando un modelo paramétrico clásico, como el modelo de fluido equivalente.
Por esta razón, a lo largo del caṕıtulo, se ha realizado una revisión detallada de los
distintos modelos paramétricos de fluido equivalente, atendiendo a sus parámetros
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intŕınsecos. Puesto que los datos experimentales disponibles son de materiales con
una y con varias capas, se ha realizado un estudio de varios problemas de propa-
gación acústica en medios multicapa con distintas configuraciones, especificando las
diferentes condiciones de acople utilizadas entre los medios (condiciones de contacto,
pared ŕıgida o condiciones de radiación) y las cantidades acústicas más relevantes (coe-
ficiente de absorción o impedancia de superficie de un medio). Por último, se muestran
resultados numéricos obtenidos utilizando un ajuste con un modelo paramétrico, para
ilustrar en qué situaciones es útil un enfoque paramétrico, y los puntos débiles de esta
metodoloǵıa, en los que un enfoque no paramétrico puede no solo mejorar los resul-
tados del ajuste paramétrico sino también solucionar las dificultades que aparecen
cuando se utiliza dicho ajuste.

• Caṕıtulo 2: Enfoque no paramétrico de fluido equivalente para la carac-
terización acústica de materiales porosos ŕıgidos. Para evitar la incertidumbre
epistémica cuando el modelo paramétrico elegido para caracterizar un material poroso
ŕıgido no es el adecuado, en este caṕıtulo se considera un enfoque basado en datos, evi-
tando la elección de una ley constitutiva dependiente de la frecuencia para el ajuste.
Teniendo en cuenta los datos experimentales disponibles y sin considerar ninguna
dependencia funcional de los parámetros, se resuelve numéricamente un problema
inverso para cada frecuencia de interés. En este caṕıtulo, se definen las cantidades
acústicas utilizadas para caracterizar los materiales porosos y se describe el montaje
utilizado para medir los datos experimentales. Dicho montaje describe la metodoloǵıa
desarrollada por Utsuno [171] para caracterizar materiales de una capa, por lo que se
ha utilizado para validar los resultados obtenidos con la metodoloǵıa propuesta. Se
explica detalladamente el problema inverso utilizado, se estudia si el problema está
bien o mal planteado y se examinan cuatro estrategias diferentes utilizadas para elegir
las incógnitas en el problema inverso. Cada una de ellas supera las limitaciones de la
estrategia anterior. Los resultados numéricos muestran que la metodoloǵıa propuesta
es útil en una configuración de una sola capa de material poroso, comparando los
resultados con los obtenidos con el método de Utsuno, y que puede ampliarse a una
configuración de dos capas de materiales porosos, en la que no pueden aplicarse otras
metodoloǵıas, mostrando una buena concordancia cuando se comparan los resultados
numéricos con los datos experimentales.

El trabajo descrito en este caṕıtulo es una colaboración con Jesús Carbajo y Jaime
Ramis del Departamento de F́ısica, Ingenieŕıa de Sistemas y Teoŕıa de la Señal de
la Universidad de Alicante, y parte de los resultados presentados en este caṕıtulo se
encuentran publicados en [54].

Parte II: Caracterización de materiales viscoelásticos en acústica submarina La
segunda parte de este documento está dedicada al estudio del comportamiento acústico de
un material viscoelástico a frecuencias ultrasónicas en acústica submarina. El material es
una capa de poĺımero que tiene un comportamiento viscoelástico a frecuencias ultrasónicas.
Los datos experimentales disponibles son la reducción de eco (ER), la pérdida por inserción



290 Resumen en castellano

(IL) y el coeficiente de disipación de potencia (FPD), medidas dentro de un tanque de agua.
Esta segunda parte tiene dos objetivos principales. El primero es caracterizar el material
viscoelástico considerando que tiene superficie plana, utilizado un enfoque basado en datos.
En este primer caso, se ha estudiado un problema de propagación acústica donde se han
tenido en cuenta dos fuentes acústicas diferentes: una onda plana que incide en el material
con un ángulo de incidencia oblicuo, y una fuente acústica con un patrón de directividad no
plano. El segundo objetivo de esta parte es caracterizar el material viscoelástico teniendo
en cuenta su superficie periódica y no plana. Para ello, se utiliza un método de ecuaciones
integrales para resolver un problema de transmisión entre dos medios, considerando una
interfaz de acople periódica entre ellos. A continuación se explica la organización de esta
segunda parte:

• Caṕıtulo 3: Caracterización no paramétrica de materiales viscoelásticos.
En este caṕıtulo, se ha caracterizado una capa de material polimérico debajo del agua,
a frecuencias ultrasónicas. Aunque el material original tiene una superficie no plana,
se considera como primera simplificación que su superficie es plana. En primer lugar,
se describen los modelos matemáticos de los medios involucrados en el multicapa:
fluido compresible disipativo y sólido viscoelástico. Después se describe el problema
acoplado que se está considerando, y las cantidades acústicas de interés (coeficientes
de reflexión y de transmisión, ER, IL y FPD). Se han descrito dos problemas de propa-
gación de ondas: cuando la fuente es una onda plana que incide en el material con
incidencia oblicua, y cuando la fuente acústica es un array paramétrico, con un patrón
de directividad no plano. Puesto que la metodoloǵıa utilizada para la caracterización
es un enfoque basado en datos, se resuelve numéricamente un problema inverso para
cada frecuencia de interés. A lo largo del caṕıtulo, se muestran diferentes leyes consti-
tutivas que se han considerado sobre las incógnitas del problema inverso (considerar
que el módulo de Young es una función lineal de la frecuencia, que está gobernado por
una función arbitraria suave y dependiente de la frecuencia, o considerar unas nuevas
variables que dependen del número de onda del material y de su espesor), mostrando
las dificultades derivadas de cada una de ellas y cómo pueden superarse. Se ha de-
mostrado que el problema está mal planteado y se ha realizado una validación de la
metodoloǵıa propuesta, utilizando datos manufacturados. Para ilustrar la robustez
de la metodoloǵıa utilizada con respecto al iterante inicial elegido para resolver el
problema de optimización, se ha considerado una variedad de iterantes iniciales en
una cuadŕıcula alrededor del valor exacto. Se han realizado curvas de ajuste para las
cantidades de interés, ER, IL y FPD, para mostrar la variabilidad de las respuestas en
frecuencia al variar el iterante inicial. Finalmente, se muestran resultados numéricos
con un material real para ilustrar la eficacia del método propuesto.

• Caṕıtulo 4: Simulación numérica de materiales con geometŕıas no planas.
Se considera el mismo sólido viscoelástico que en el caṕıtulo anterior, pero, en este
caso, su superficie es periódica y no plana. Dado que el problema de transmisión entre
dos medios, con una superficie periódica no plana y considerando que la fuente tiene
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un patrón de directividad no plano presenta muchas dificultades, se han hecho varias
simplificaciones (la fuente acústica considerada es una onda plana que incide con un
ángulo de incidencia oblicuo y se han despreciado los posibles efectos de cizallamiento,
suponiendo que el material solamente puede deformarse por tensiones mecánicas de
tensión/compresión). A lo largo de este caṕıtulo se propone un método de ecuaciones
integrales para resolver este problema. El problema que aparece en dicho método
es que no converge para todas las frecuencias. Para lograr que el método propuesto
tenga una convergencia rápida, se ha usado una función de Green cuasi-periódica
desplazada y una técnica de ventaneo. A lo largo del caṕıtulo y en aras de la com-
pletitud, se han descrito dos problemas diferentes. El primer problema es la dispersión
de ondas acústicas por una superficie periódica con frontera libre. Para resolver este
problema se han utilizando representaciones de simple y de doble capa. En ambos
casos se ha detallado el desarrollo del método integral, explicando el problema de con-
vergencia que aparece en los núcleos integrales. Puesto que estos núcleos involucran
funciones de Hankel y de Bessel, aparecen singularidades logaŕıtmicas que hay que
tratar de forma separada, dividiendo dichos núcleos en una parte suave y una parte
que contiene la singularidad. Además, se definen reglas de cuadratura para aproximar
todas las integrales que aparecen en el método. El segundo problema a estudiar, es
el problema de transmisión por una interfaz de acople periódica entre dos medios. Al
igual que en el caso anterior, se han utilizado potenciales de simple y de doble capa
en las formulaciones integrales. En este caso, además de aparecer los núcleos que
aparećıan en el primer problema, aparecen núcleos hipersingulares. Dichos núcleos
también tienen singularidades logaŕıtmicas que son resueltas separando la integral en
dos integrales (una con un núcleo suave y otra que contiene la parte logaŕıtmica),
que son aproximadas con las reglas de cuadratura descritas anteriormente. Al final
del caṕıtulo se muestran los resultados numéricos. Para validar la metodoloǵıa, se
han comparado los resultados con los obtenidos utilizando el método de elementos
finitos con una malla grosera, mostrando que los errores son varios órdenes menores.
Además, se calculan las eficiencias para mostrar el rápido orden de convergencia del
método.

El trabajo descrito en este caṕıtulo es una colaboración con el profesor Oscar P. Bruno
del California Institute of Technology, realizado durante una estancia predoctoral de
14 semanas.

Parte III: Caracterización de sistemas complejos utilizando problemas depen-
dientes del tiempo. La última parte de la tesis muestra la caracterización de sistemas
complejos en los que intervienen diferentes tipos de materiales, como materiales porosos
ŕıgidos, sólidos viscoelásticos o materiales poroelásticos, utilizando problemas dependientes
del tiempo. Los datos experimentales disponibles proceden de dos configuraciones dife-
rentes: los coeficientes de absorción en campo difuso, medidos en una cabina alfa, y la
rigidez dinámica, medida mediante un método de excitación. En primer lugar, se propone
una metodoloǵıa para calcular el coeficiente de absorción en campo difuso de un material
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poroso en una cabina alfa. En segundo lugar, se explica un nuevo método basado en un en-
foque de modelización jerárquica para calcular la rigidez dinámica de un sólido viscoelástico
o poroelástico. Esta tercera parte se organiza de la siguiente manera:

• Caṕıtulo 5: Caracterización de materiales porosos utilizando cabinas alfa.
Aunque el coeficiente de absorción en campo difuso de un material puede ser calcu-
lado a partir de el coeficiente de absorción medido en el tubo de Kundt, la técnica
más común para calcularlo es el utilizar una cámara reverberante. En la industria
automoviĺıstica el coeficiente de absorción de un material se suele medir en una cabina
alfa que es una cámara reverberante donde el rango de frecuencia y el tamaño de la
muestra está adaptado a los requerimientos de la acústica automoviĺıstica. Puesto que
no existe un standard sobre cómo medir el coeficiente de absorción en la cabina, en
este caṕıtulo se propone una modificación de la técnica utilizada en la cámara rever-
berante. El objetivo principal es adaptar la metodoloǵıa disponible a las dimensiones
de la cabina alfa para conseguir medir el campo difuso. Por esta razón, se hacen dife-
rentes supuestos sobre el comportamiento del sonido dentro de la cabina. Para medir
el coeficiente de absorción, es necesario medir el tiempo de reverberación en la cabina
con la muestra y sin la muestra. Por tanto, se considera una discretización depen-
diente del tiempo para calcular el tiempo de reverberación en la cabina, y se dan dos
expresiones diferentes para obtener el coeficiente de absorción en campo difuso a par-
tir de dicho tiempo de reverberación (fórmulas de Sabine y Millington). Por último, se
muestran resultados numéricos en dominios bidimensionales y tridimensionales para
ilustrar la eficacia del método propuesto.

• Caṕıtulo 6: Modelado jerárquico para determinar las propiedades mecánicas
de un material elástico utilizando su rigidez dinámica. La rigidez dinámica de
un material elástico es muy importante para cuantificar la reducción de la propagación
del ruido. Por esta razón, esta cantidad puede ser utilizada para determinar el ais-
lamiento acústico producido por este tipo de materiales. El propósito de este caṕıtulo
consiste en obtener los coeficientes elásticos del material, utilizando una metodoloǵıa
numérica basada en un modelado jerárquico, y considerando únicamente los datos
experimentales disponibles. La definición de la jerarqúıa de modelos se hace con-
siderando desde los modelos más simples hasta aquellos en los que se tienen en cuenta
los detalles más sofisticados y sus niveles de precisión se basan en las suposiciones
hechas en cada nivel. En este enfoque, las diferencias entre los modelos matemáticos
se basan en la elección de un modelo unidimensional o tridimensional y en el uso o no
de los modos de cizallamiento que posiblemente estén contribuyendo a la solución. Se
proponen diferentes modelos para describir el comportamiento de los materiales vis-
coelásticos y poroelásticos, y se considera una discretización dependiente del tiempo
para resolver el problema. Se presentan algunos resultados numéricos con datos ma-
nufacturados para validar el código, además de algunos resultados preliminares con
un material real.

El trabajo descrito en este caṕıtulo es una colaboración con Jesús Carbajo, Pedro
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Poveda y Jaime Ramis del Departamento de F́ısica, Ingenieŕıa de Sistemas y Teoŕıa
de la Señal de la Universidad de Alicante.

La última parte de este documento está dedicada a proponer algunas ĺıneas de in-
vestigación futuras, algunas de las cuales están comenzando a desarrollarse, y otras son
problemas abiertos que, debido a su relevancia, podŕıan estudiarse en un futuro.
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[26] A. Bermúdez, J. L. Ferŕın, and A. Prieto. A finite element solution of acoustic
propagation in rigid porous media. International Journal for Numerical Methods in
Engineering, 62(10):1295–1314, 2005.
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de Acústica, 2017.

[54] J. Carbajo, A. Prieto, J. Ramis, and L. Ŕıo-Mart́ın. A non-parametric fluid-equivalent
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[90] C. Hazard and E. Lunéville. An improved multimodal approach for non-uniform
acoustic waveguides. IMA Journal of Applied Mathematics, 73(4):668–690, 2008.



304 BIBLIOGRAPHY

[91] M. Hodgson. Experimental evaluation of the accuracy of the Sabine and Eyring
theories in the case of non-low surface absorption. Journal of the Acoustical Society
of America, 94(2):835–40, 1993.

[92] M. Hodgson. When is diffuse field theory applicable? Applied Acoustics, 49(3):197–
207, 1996.

[93] K. V. Horoshenkov. A review of acoustical methods for porous material characteri-
sation. International Journal of Acoustics and Vibration, 22(1):92–103, 2017.
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